HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
基本信息
- 批准号:0934509
- 负责人:
- 金额:$ 38.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project to develop new methods for scientifically studying and assessing human cognitive function. It will employ sophisticated statistical multimodal data analysis techniques that will fuse contextual, behavioral, and neural information simultaneously obtained from human beings in the process of completing complex batteries of cognitive tasks. The tasks will be presented in the form of customized computer games that are designed to exhibit the crucial aspects of established cognitive assessment tests and at the same time provide a motivating and engaging environment for the subject's interactions with the game and computer agents. The tasks will involve exploiting our existing capabilities of monitoring and controlling certain enjoyable and challenging computer games that involve various combinations of cognitive tasks ranging from working memory and attention to executive functions. Multimodal information fusion will be accomplished by utilizing Bayesian inference techniques and information theoretic data analysis and dimensionality reduction methods. The work to be carried out under this grant aims to develop sophisticated pattern analysis techniques for the purpose of analyzing the fine-grain behaviors of elderly when they are engaged in complex cognitive tasks in the form of computer games. Expected significant scientific findings from the proposed research are two-fold: (1) improved statistical signal processing and pattern recognition algorithms for EEG processing, (2) an enhanced understanding of the interplay of multiple cognitive processes and their neural signatures in EEG during the execution of complex tasks. The approach is innovative in terms of three aspects: (1) an advanced adaptive interaction protocol that modifies the task parameters to maintain maximal sensitivity to cognitive state changes will be employed, (2) novel information theoretic techniques will be developed and utilized for the extraction of maximally discriminative features from EEG measurements for cognitive state estimation and neural activity visualization, (3) the developed closed-loop system will be utilized to study the human-agent interaction in complex cognitive tasks resulting in mathematical models of micro-behavior in realistic evolving environments as opposed to traditional stationary repetitive experimental paradigms. The successful completion of the work will open the way to further collaborative activities in brain interface design, closed-loop collaborative augmented cognition human-agent interfaces for improved performance, and early diagnosis of cognitive decline in elderly. An interdisciplinary research environment will engage the participating graduate students in a multidisciplinary educational setting and will help them develop skills to perform collaborative interdisciplinary research.
这是一个开发科学研究和评估人类认知功能的新方法的项目。它将采用复杂的统计多模式数据分析技术,这些技术将在完成认知任务的复杂电池的过程中同时从人类获得的上下文,行为和神经信息融合。这些任务将以定制的计算机游戏的形式呈现,旨在展示已建立的认知评估测试的关键方面,同时为受试者与游戏和计算机代理的互动提供了一个激励而引人入胜的环境。这些任务将涉及利用我们现有的监视和控制某些愉快而挑战的计算机游戏的能力,这些功能涉及各种认知任务的组合,从工作记忆和关注到执行功能。多模式信息融合将通过利用贝叶斯推理技术和信息理论数据分析和降低降低方法来完成。 这项赠款将进行的工作旨在开发复杂的模式分析技术,目的是分析老年人以计算机游戏形式从事复杂的认知任务时的细粒度行为。拟议研究的预期科学发现有两个方面的重大发现:(1)改进了脑电图处理的统计信号处理和模式识别算法,(2)在复杂任务执行过程中,对多种认知过程及其神经信号的相互作用的了解增强了。 The approach is innovative in terms of three aspects: (1) an advanced adaptive interaction protocol that modifies the task parameters to maintain maximal sensitivity to cognitive state changes will be employed, (2) novel information theoretic techniques will be developed and utilized for the extraction of maximally discriminative features from EEG measurements for cognitive state estimation and neural activity visualization, (3) the developed closed-loop system will be utilized在复杂的认知任务中研究人类代理人的相互作用,从而导致在现实发展的环境中与传统固定重复的实验范式相反,导致微行为的数学模型。 这项工作的成功完成将为进一步的脑接口设计,闭环协作增强认知界面以改善绩效以及老年人认知能力下降的早期诊断。跨学科的研究环境将使参与的研究生参与多学科的教育环境,并将帮助他们发展技能,以进行协作跨学科研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deniz Erdogmus其他文献
Uncertainty in the diagnosis of preplus disease in retinopathy of prematurity (ROP)
- DOI:
10.1016/j.jaapos.2015.07.075 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:
- 作者:
Allison R. Loh;Michael Ryan;Katherine Abrahams;Esra Cansizoglu;R.V. Paul Chan;Audina Berrocal;Jayashree Kalpathy;Veronica Bolon;Deniz Erdogmus;Michael F. Chiang - 通讯作者:
Michael F. Chiang
M2M-InvNet: Human Motor Cortex Mapping From Multi-Muscle Response Using TMS and Generative 3D Convolutional Network
M2M-InvNet:使用 TMS 和生成 3D 卷积网络根据多肌肉响应进行人类运动皮层映射
- DOI:
10.1109/tnsre.2024.3378102 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Md Navid Akbar;M. Yarossi;S. Rampersad;Kyle Lockwood;A. Masoomi;E. Tunik;Dana Brooks;Deniz Erdogmus - 通讯作者:
Deniz Erdogmus
Fast Estimation of Morphing Wing Flight Dynamics Using Neural Networks and Cubature Rules
使用神经网络和体积规则快速估计变形机翼飞行动力学
- DOI:
10.1109/cdc49753.2023.10384125 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paul Ghanem;Yunus Bicer;Deniz Erdogmus;Alireza Ramezani - 通讯作者:
Alireza Ramezani
Plus disease: is it more than meets the ICROP?
- DOI:
10.1016/j.jaapos.2016.07.008 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
John P. Campbell;Esra Ataer-Cansizoglu;Veronica Bolon-Canedo;Deniz Erdogmus;Jayashree Kalpathy-Cramer;Samir Patel;R.V.P. Chan;Michael F. Chiang - 通讯作者:
Michael F. Chiang
Plus disease in rop: why do experts disagree, and how can we improve diagnosis?
- DOI:
10.1016/j.jaapos.2017.07.014 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
John P. Campbell;Jayashree Kalpathy-Cramer;Deniz Erdogmus;Susan Ostmo;Ryan Swan;Kemal Sonmez;R.V. Paul Chan;Michael F. Chiang - 通讯作者:
Michael F. Chiang
Deniz Erdogmus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deniz Erdogmus', 18)}}的其他基金
CHS: Small: Collaborative Research: EEG-Guided Electrical Stimulation for Immersive Virtual Reality
CHS:小型:合作研究:脑电图引导的沉浸式虚拟现实电刺激
- 批准号:
1715858 - 财政年份:2017
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
I-Corps: Assistive Context Aware Interface
I-Corps:辅助情境感知界面
- 批准号:
1658790 - 财政年份:2016
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Nested Control of Assistive Robots through Human Intent Inference
CPS:TTP 选项:协同:协作研究:通过人类意图推理对辅助机器人进行嵌套控制
- 批准号:
1544895 - 财政年份:2015
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
CAREER: Signal Models, Channel Capacity, and Information Rate for Noninvasive Brain Interfaces
职业:无创脑接口的信号模型、通道容量和信息率
- 批准号:
1149570 - 财政年份:2012
- 资助金额:
$ 38.32万 - 项目类别:
Continuing Grant
Collaborative Research: CDI-Type I: Computational Models for the Automatic Recognition of Non-Human Primate Social Behaviors
合作研究:CDI-Type I:自动识别非人类灵长类动物社会行为的计算模型
- 批准号:
1027724 - 财政年份:2010
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
HCC-Small: RSVP IconCHAT - A Brain Computer Interface for Icon-based Communication
HCC-Small:RSVP IconCHAT - 用于基于图标的通信的脑机接口
- 批准号:
0914808 - 财政年份:2009
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
- 批准号:
0934506 - 财政年份:2008
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
Robust Information Filtering Techniques for Static and Dynamic State Estimation
用于静态和动态估计的鲁棒信息过滤技术
- 批准号:
0929576 - 财政年份:2008
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
- 批准号:
0713690 - 财政年份:2007
- 资助金额:
$ 38.32万 - 项目类别:
Continuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
- 批准号:
0622239 - 财政年份:2006
- 资助金额:
$ 38.32万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习的跨任务认知负荷评估研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于深度学习的跨任务认知负荷评估研究
- 批准号:62276130
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
地图动态认知负荷评估、建模及控制机理的眼动联合研究
- 批准号:42271464
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
阻碍还是挑战?——创业压力的认知评估对创业退出的双刃剑效应研究
- 批准号:72202237
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于智能语音分析的老年认知障碍评估方法研究
- 批准号:62106246
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Assessing and Improving the Durability of Compensatory Cognitive Training for Older Veterans (AID-CCT)
评估和提高老年退伍军人补偿性认知训练的持久性 (AID-CCT)
- 批准号:
10636523 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Assessing the Clinical and Cost-Effectiveness of a Virtual PEth-based Contingency Management for Adults with AUD
评估针对成人 AUD 的基于虚拟 PEth 的应急管理的临床和成本效益
- 批准号:
10717985 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Assessing the Dynamics of Hippocampal Neuronal Engrams in Memory Formation and Aging
评估海马神经元印迹在记忆形成和衰老中的动态
- 批准号:
10829020 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Assessing State Emotions and Acute Alcohol Intoxication on Sexual Assault Risk Perception
评估状态情绪和急性酒精中毒对性侵犯风险感知的影响
- 批准号:
10749849 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别: