CAREER: Signal Models, Channel Capacity, and Information Rate for Noninvasive Brain Interfaces
职业:无创脑接口的信号模型、通道容量和信息率
基本信息
- 批准号:1149570
- 负责人:
- 金额:$ 50.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI's ultimate research goal is to empower people with severe speech and physical impairments so they can live their lives to the fullest extent independently and productively. To this end, he will in this project exploit and advance emerging brain computer interface (BCI) technology by rigorously developing macro-level dynamic models for the visual evoked potentials (VEP) in the brain measured by electroencephalography (EEG) in the context of BCI design. The models will enable a communication channel interpretation of the BCI and will allow analysis and design breakthroughs stemming from the application of information theory and digital communication concepts. Cortical dynamics and background processes will be modeled using a probabilistic dynamic framework at a spatiotemporal scale appropriate for BCI analysis and design. Model-based performance limits on bandwidth and calibration accuracy will then be determined, in order to develop better information coding techniques for optimal communication bandwidth (speed) utilization and better subject training and model calibration procedures for best accuracy return on investment of effort. Prototype real-time applications that operate at optimal or near-optimal performance levels utilizing the developed theoretical advancements for communication and control will be implemented, to enable access by and support independence for the target user groups. Project outcomes will disrupt the trend of black-box BCI design by building dynamic system models for stimulus-to-EEG systems encountered in BCI applications, and treating them as stochastic communication channels in order to characterize signals accordingly and to employ information theoretic approaches to analysis and design. This novel theoretical framework will enable model-based quantitative characterization of BCI performance limits and will allow the design of optimal or near-optimal coding/decoding strategies as well as improved calibration procedures that will have immediate impact on increasing bandwidth and intent detection accuracy, as well as calibration duration reduction in BCI systems - primary barriers between laboratory prototypes and real-world-worthy BCI products.Broader Impacts: If successful this project will advance BCI technology to the next level, thereby revolutionizing human computer interaction and empowering persons with physical disabilities by enabling seamless control of computers and devices. The project will afford, through collaboration with the Center for Subsurface Sensing and Imaging Systems (CenSSIS) at Northeastern University as well as colleagues across departments and institutions, opportunities to both undergraduate engineering and non-engineering majors for enhanced learning and collaboration skills by immersing them in interdisciplinary cutting-edge research and design projects with societal impact. The PI will engage high school students and teachers in the research through his institution's Center for STEM Education. And he will inform the broader public of ongoing technological advances in the BCI field and raise disability awareness through collaboration with the Cahners ComputerPlace at the Boston Museum of Science.
PI的最终研究目标是赋予患有严重言语和身体障碍的人的能力,以便他们可以独立和高效地在最大程度上过着生活。 为此,他将在该项目中利用并推动新兴的大脑计算机界面(BCI)技术,通过在BCI设计的背景下通过脑电脑术(EEG)测量的大脑中的视觉诱发电位(VEP)进行严格开发宏观动态模型(VEP)。 这些模型将实现BCI的通信渠道解释,并允许通过信息理论和数字通信概念的应用而产生的分析和设计突破。 皮质动力学和背景过程将使用适合BCI分析和设计的时空尺度上的概率动态框架进行建模。 然后将确定基于模型的带宽和校准精度的性能限制,以开发出更好的信息编码技术,以实现最佳通信带宽(速度)利用率(速度)利用率以及更好的主题培训和模型校准程序,以最佳准确的努力回报。 将实现以最佳或近乎最佳的性能级别运行的实时应用程序,利用开发的理论进步进行通信和控制,以实现目标用户组的访问并支持独立性。 项目成果将通过构建BCI应用中遇到的刺激到EEG系统的动态系统模型来破坏Black Box BCI设计的趋势,并将它们视为随机通信渠道,以便相应地表征信号并采用信息理论方法来分析和设计。 This novel theoretical framework will enable model-based quantitative characterization of BCI performance limits and will allow the design of optimal or near-optimal coding/decoding strategies as well as improved calibration procedures that will have immediate impact on increasing bandwidth and intent detection accuracy, as well as calibration duration reduction in BCI systems - primary barriers between laboratory prototypes and real-world-worthy BCI products.boarder的影响:如果成功的话,该项目将使BCI技术更加新的水平,从而彻底改变了人类的计算机互动,并通过无缝控制计算机和设备来赋予身体残障人士的能力。 该项目将通过与东北大学的地下传感和成像系统(人口普查)以及部门和机构的同事合作,提供本科工程学和非工程学专业的机会,从而使他们通过与社会跨学科的高级研究和设计项目中的融入,以增强学习和协作技能。 PI将通过其机构的STEM教育中心吸引高中生和老师参与研究。 他将通过与波士顿科学博物馆的Cahners Computerplace合作来告知BCI领域正在进行的技术进步,并提高残疾意识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Deniz Erdogmus其他文献
Uncertainty in the diagnosis of preplus disease in retinopathy of prematurity (ROP)
- DOI:10.1016/j.jaapos.2015.07.07510.1016/j.jaapos.2015.07.075
- 发表时间:2015-08-012015-08-01
- 期刊:
- 影响因子:
- 作者:Allison R. Loh;Michael Ryan;Katherine Abrahams;Esra Cansizoglu;R.V. Paul Chan;Audina Berrocal;Jayashree Kalpathy;Veronica Bolon;Deniz Erdogmus;Michael F. ChiangAllison R. Loh;Michael Ryan;Katherine Abrahams;Esra Cansizoglu;R.V. Paul Chan;Audina Berrocal;Jayashree Kalpathy;Veronica Bolon;Deniz Erdogmus;Michael F. Chiang
- 通讯作者:Michael F. ChiangMichael F. Chiang
M2M-InvNet: Human Motor Cortex Mapping From Multi-Muscle Response Using TMS and Generative 3D Convolutional Network
M2M-InvNet:使用 TMS 和生成 3D 卷积网络根据多肌肉响应进行人类运动皮层映射
- DOI:10.1109/tnsre.2024.337810210.1109/tnsre.2024.3378102
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Md Navid Akbar;M. Yarossi;S. Rampersad;Kyle Lockwood;A. Masoomi;E. Tunik;Dana Brooks;Deniz ErdogmusMd Navid Akbar;M. Yarossi;S. Rampersad;Kyle Lockwood;A. Masoomi;E. Tunik;Dana Brooks;Deniz Erdogmus
- 通讯作者:Deniz ErdogmusDeniz Erdogmus
Fast Estimation of Morphing Wing Flight Dynamics Using Neural Networks and Cubature Rules
使用神经网络和体积规则快速估计变形机翼飞行动力学
- DOI:10.1109/cdc49753.2023.1038412510.1109/cdc49753.2023.10384125
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Paul Ghanem;Yunus Bicer;Deniz Erdogmus;Alireza RamezaniPaul Ghanem;Yunus Bicer;Deniz Erdogmus;Alireza Ramezani
- 通讯作者:Alireza RamezaniAlireza Ramezani
Plus disease: is it more than meets the ICROP?
- DOI:10.1016/j.jaapos.2016.07.00810.1016/j.jaapos.2016.07.008
- 发表时间:2016-08-012016-08-01
- 期刊:
- 影响因子:
- 作者:John P. Campbell;Esra Ataer-Cansizoglu;Veronica Bolon-Canedo;Deniz Erdogmus;Jayashree Kalpathy-Cramer;Samir Patel;R.V.P. Chan;Michael F. ChiangJohn P. Campbell;Esra Ataer-Cansizoglu;Veronica Bolon-Canedo;Deniz Erdogmus;Jayashree Kalpathy-Cramer;Samir Patel;R.V.P. Chan;Michael F. Chiang
- 通讯作者:Michael F. ChiangMichael F. Chiang
39 - Approximation of Fully Optimized HD-tDCS Stimulus Patterns with Fewer Current Sources Using Branch and Bound Algorithm
- DOI:10.1016/j.brs.2016.11.05710.1016/j.brs.2016.11.057
- 发表时间:2017-01-012017-01-01
- 期刊:
- 影响因子:
- 作者:Seyhmus Guler;Moritz Dannhauer;Burak Erem;Rob Macleod;Don Tucker;Sergei Turovets;Phan Luu;Deniz Erdogmus;Dana H. BrooksSeyhmus Guler;Moritz Dannhauer;Burak Erem;Rob Macleod;Don Tucker;Sergei Turovets;Phan Luu;Deniz Erdogmus;Dana H. Brooks
- 通讯作者:Dana H. BrooksDana H. Brooks
共 9 条
- 1
- 2
Deniz Erdogmus的其他基金
CHS: Small: Collaborative Research: EEG-Guided Electrical Stimulation for Immersive Virtual Reality
CHS:小型:合作研究:脑电图引导的沉浸式虚拟现实电刺激
- 批准号:17158581715858
- 财政年份:2017
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
I-Corps: Assistive Context Aware Interface
I-Corps:辅助情境感知界面
- 批准号:16587901658790
- 财政年份:2016
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
CPS: TTP Option: Synergy: Collaborative Research: Nested Control of Assistive Robots through Human Intent Inference
CPS:TTP 选项:协同:协作研究:通过人类意图推理对辅助机器人进行嵌套控制
- 批准号:15448951544895
- 财政年份:2015
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CDI-Type I: Computational Models for the Automatic Recognition of Non-Human Primate Social Behaviors
合作研究:CDI-Type I:自动识别非人类灵长类动物社会行为的计算模型
- 批准号:10277241027724
- 财政年份:2010
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
HCC-Small: RSVP IconCHAT - A Brain Computer Interface for Icon-based Communication
HCC-Small:RSVP IconCHAT - 用于基于图标的通信的脑机接口
- 批准号:09148080914808
- 财政年份:2009
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
- 批准号:09345090934509
- 财政年份:2008
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Continuing GrantContinuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
- 批准号:09345060934506
- 财政年份:2008
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
Robust Information Filtering Techniques for Static and Dynamic State Estimation
用于静态和动态估计的鲁棒信息过滤技术
- 批准号:09295760929576
- 财政年份:2008
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
- 批准号:07136900713690
- 财政年份:2007
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Continuing GrantContinuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
- 批准号:06222390622239
- 财政年份:2006
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
生姜6-姜酚调控IDO1信号通路改善肠道粘液屏障功能的机制探究
- 批准号:32301974
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拟南芥转录因子ERF012调控ABA信号和种子萌发的分子机制
- 批准号:32300281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肉羊生命特征精准辨识的可穿戴柔性无创多模态传感信号检测方法研究
- 批准号:62303471
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位矿化诱导中性粒细胞弹性蛋白酶ELANE介导Notch信号通路增效肺癌放疗的机制研究
- 批准号:82373199
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
二价染色质调控拟南芥响应发育与环境信号的分子与表观遗传机理研究
- 批准号:32330007
- 批准年份:2023
- 资助金额:219 万元
- 项目类别:重点项目
相似海外基金
Differential changes in energy metabolism in response to mechanical tension give rise to human scaring heterogeneity
响应机械张力的能量代谢的差异变化导致人类恐惧异质性
- 批准号:1066041610660416
- 财政年份:2023
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:1057253910572539
- 财政年份:2023
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:
Functional Landscape of Glycosylation in Skin Cancer
皮肤癌中糖基化的功能景观
- 批准号:1058109410581094
- 财政年份:2023
- 资助金额:$ 50.46万$ 50.46万
- 项目类别:
Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy
虚拟药物筛选揭示了心肌细胞肥大的情境依赖性抑制
- 批准号:1067835110678351
- 财政年份:2023
- 资助金额:$ 50.46万$ 50.46万
- 项目类别: