BRIGE: Time-resolved Surface Damping in Nanoscale Resonators for Monitoring of Biological/Chemical Reactions
BRIGE:纳米级谐振器中的时间分辨表面阻尼,用于监测生物/化学反应
基本信息
- 批准号:0926228
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BRIGE: Time-Resolved Surface Damping in Nanoscale Resonators for Monitoring of Biological/Chemical ReactionsThe fundamental investigation of energy dissipation from surface forces (i.e., surface dissipation) in nanomechanical resonators is proposed, especially in regards to how it may be used to detect and study biological or chemical reactions. In the past decade, micro- and nano-mechanical resonators have been thoroughly studied for use as chemical and biological sensors by detecting mass-induced change of resonant frequency that results from specific reactions. However, the dissipation of vibrational energy due to surface forces, one reason that resonators eventually "ring down," has until now not been utilized as a sensing mechanism. Previous work demonstrated that surface forces can have a more powerful effect on surface dissipation than on resonant frequency, opening up the possibility that surface dissipation could be used as a new sensing metric for resonating biological or chemical sensors. The parameter quality factor (Q) is a measure of energy dissipation in resonators, with energy lost to surface forces (Qsurface) being the particular loss mechanism of interest in this work. Toward this end, three objectives will be pursued: 1) Fabrication of resonators with Qsurface as the limiting energy dissipation mechanism, 2) Measurement of Qsurface dependence on different gases, and 3) Tracking the change of Qsurface over time to determine if temporal information about Qsurface can give insight into the occurrence or progress of biological or chemical reactions. The intellectual merit of the proposed work is as follows: First, a fundamental question - "Why do resonators not ring forever?" - will be addressed. While some forms of energy dissipation (e.g., air damping) are reasonably well understood, others remain elusive. Surface dissipation is especially difficult to understand, because its dependence on a high surface-to-volume ratio makes it difficult to see above the nanoscale. Next, the use of Qsurface as a new tool for measuring the occurrence or progress of chemical or biological reactions will be explored, revealing insight into surface forces that would not be measureable with a purely mass-induced frequency-shift method. Finally, the use of time-resolved measurements will be investigated to reveal differences between chemical or biological reactions that occur during the reaction process, as opposed to looking at only the before-and-after snapshot views.This work will have broader impact in several ways. In engineering, the use of surface dissipation could allow for a new platform for measuring biological and chemical reactions. The time-resolution of these measurements could lead to discovery of surface force-related phenomena during these reactions. In education, this program will enable four undergraduate students from underrepresented groups to each receive one year of research training. This will prepare these students to be the technical leaders and role models for the next generation of engineers. The undergraduate researchers will serve as role models and mentors to high school students by teaching them about how engineering benefits society.
BRIGE:纳米级谐振器中的时间分辨表面阻尼监测生物/化学反应的基本研究纳米力学谐振器中表面力(即表面耗散)的基本研究提出了如何用于检测和研究生物学或化学反应的方式。 在过去的十年中,通过检测质量引起的谐振频率的变化,这是由特定反应引起的,对微力和纳米机械谐振器进行了彻底研究,以作为化学和生物传感器。 然而,由于表面力引起的振动能量的耗散,这是谐振器最终“响起”的原因,直到现在尚未被用作感应机制。 先前的工作表明,表面力对表面耗散的作用比对共振频率具有更强大的作用,这使表面耗散可以用作谐音生物学或化学传感器的新传感度量。 参数质量因子(Q)是谐振器中能量耗散的量度,而能量损失了表面力(Qsurface)是这项工作中感兴趣的特定损失机制。 为此,将实现三个目标:1)用QSurface作为限制能量耗散机制的谐振器的制造,2)测量Qsurface依赖于不同气体的Qsurface依赖性,3)跟踪Qsurface随时间的变化以确定有关QSurface的时间信息是否可以使有关生物学或化学反应的发生的时间信息是否可以使QSURFACE的变化能够洞悉生物或化学反应。拟议作品的智力优点如下:首先,一个基本问题:“谐振器为什么不永远响起?” - 将被解决。 尽管某些形式的能量耗散(例如,空气阻尼)是相当理解的,但其他形式仍然难以捉摸。 表面耗散尤其难以理解,因为它对高表面与体积比率的依赖性使得难以在纳米级上方看到。 接下来,将探索将QSurface用作测量化学或生物反应的发生或进展的新工具,从而揭示了对表面力的洞察力,而这种力是通过纯粹质量诱导的频率转移方法无法测量的。 最后,将研究使用时间分辨的测量结果,以揭示反应过程中发生的化学或生物反应之间的差异,而不是仅查看前后的快照视图。这项工作将以多种方式产生更大的影响。 在工程中,表面耗散的使用可以允许一个新的平台来测量生物学和化学反应。 这些测量值的时间分辨率可能导致在这些反应过程中发现与表面力相关的现象。 在教育方面,该计划将使来自代表性不足的小组的四名本科生能够接受一年的研究培训。 这将使这些学生成为下一代工程师的技术领导者和榜样。 本科研究人员将通过向高中生的榜样和指导者进行教导,以教导他们如何使社会受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Candler其他文献
Robert Candler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Candler', 18)}}的其他基金
Miniature Magnetic Devices-based Chip-scale Panofksy Quadrupoles for Focusing Electron Beams
用于聚焦电子束的基于微型磁性器件的芯片级 Panofksy 四极杆
- 批准号:
1936598 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Student Travel for the 18th International Conference on Solid-State Sensors, Actuators and Microsystems
第 18 届固态传感器、执行器和微系统国际会议的学生旅行
- 批准号:
1550387 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Microscale Magnetic Devices for Next Generation Coherent X-Ray Sources
职业:用于下一代相干 X 射线源的微型磁性器件
- 批准号:
1350034 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能化网络运行监控的高维时间序列异常检测方法研究
- 批准号:62371057
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
四维时间分辨荧光光谱及其在复杂体系检测中的应用研究
- 批准号:62375112
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
应用分子影像方法探究帕金森病模型鼠心脏自主神经损伤的时间窗及心脏神经受体表达的分析
- 批准号:82360352
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
时间切换的蚊子种群压制模型解的定性研究
- 批准号:12301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
- 批准号:
530760073 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
- 批准号:
23K26612 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
- 批准号:
LE240100073 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
- 批准号:
EP/Y032659/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant