Miniature Magnetic Devices-based Chip-scale Panofksy Quadrupoles for Focusing Electron Beams

用于聚焦电子束的基于微型磁性器件的芯片级 Panofksy 四极杆

基本信息

  • 批准号:
    1936598
  • 负责人:
  • 金额:
    $ 34.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

The project will investigate a new class of miniature magnetic devices that can focus beams of electrons, similar to the way that lenses focus light. Magnetic fields are highly effective for focusing beams of electrons, but current magnets are bulky and expensive. The proposed work aspires to create a new class of magnetic focusing devices that are at least one hundred times smaller than their existing counterparts. Steering electron beams has a broad range of applications. They are used in the world's most powerful microscopes, free electron lasers, which can study the motion of individual atoms. These laser microscopes can provide insight into the fundamental behavior of atoms and molecules, which can have impact in everyday life, such as discovery of new drugs. Additionally, electron beams are also used in treating cancer, with electron beam therapy having the benefit that it can be targeted much more precisely than radiation therapy. Miniaturizing magnetic focusing devices would not only allow broader access to these electron beams for use as laser microscopes, it would also allow electron beams to be put into places previously inaccessible, such as catheters for cancer therapy. The fundamental issues that will be studied in this work are the limits of miniaturization of these devices (i.e., how small can these magnets be made while still effectively focusing electron beams). To address the challenge of miniaturization, new designs, fundamentally different from the current state-of-the-art, must be pursued. Fabrication of these devices will require a combination of methods currently used by microchip manufacturers with custom methods developed especially for this work. Students at universities will be able to perform hands-on experiments that were previously limited to beamline scientists at a handful of facilities. The proposed activities will include being a faculty lead for "Santa Monica College/UCLA" Summer Scholar Research Program, development of high-school curriculum on magnetic devices, writing one article per year covering women in science and engineering.To provide more detail, the proposed research will create a new class of microfabricated electromagnet quadrupoles for focusing electron beams. Electron beams have made profound impacts in many application areas, ranging from the world's most precise microscopes to targeted ablation of cancer. Until recently, all these applications relied on large, expensive pieces of laboratory equipment to generate and accelerate electron beams. For example, storage rings and linear coherent light sources that allow for imaging with unprecedented temporal (femtosecond) and spatial (Angstrom) resolution are often housed in facilities on the scale of kilometers. Recent advances have enabled centimeter-scale accelerators on-chip with the potential to accelerate electron beams to relativistic velocities, comparable to those at kilometer-scale facilities. While these results are promising, there remains a critical barrier: there is currently no chip-scale method that can focus the beams produced by these next-generation accelerators. Inspired by asymmetric quadrupoles, which use magnetic field gradients to focus electron beams in a rectangular aperture, this work proposes to design, fabricate, and characterize a new class of miniature rectangular quadrupoles. However, the large-scale rectangular quadrupoles cannot simply be directly miniaturized. New designs must be developed to adapt to the fabrication constraints particular to small scale fabrication, and new fabrication methods must be developed to build devices at a mesoscale size range that falls between the regions where microfabrication and standard fabrication can comfortably operate. The proposed devices will provide 20 times greater focusing gradient and fit in a volume seven orders of magnitude smaller than the current state-of-the-art rectangular quadrupoles. If successful, this will be the first-ever focusing demonstration of a relativistic electron beam using a chip-scale device.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究一类新的微型磁性设备,这些设备可以聚焦电子光束,类似于镜头聚焦光线的方式。 磁场对于聚焦电子束非常有效,但是电流磁铁笨重且昂贵。拟议的工作渴望创建一种新的磁性聚焦设备,这些设备至少比现有的磁性设备小100倍。转向电子梁具有广泛的应用。 它们用于世界上最强大的显微镜,免费电子激光器,可以研究单个原子的运动。 这些激光显微镜可以洞悉原子和分子的基本行为,这些行为可能在日常生活中影响,例如发现新药。此外,电子束还用于治疗癌症,电子束治疗具有比放射疗法更精确的靶向。微型磁性聚焦设备不仅可以使这些电子束更广泛地用作激光显微镜,还可以将电子束放入以前无法接近的地方,例如用于癌症治疗的导管。这项工作中将研究的基本问题是这些设备微型化的局限性(即,在仍然有效地聚焦电子束的同时,这些磁体可以制造多大的小)。 为了应对小型化的挑战,必须追求与当前最新的新设计。这些设备的制造将需要相结合的微芯片制造商当前使用的方法以及为这项工作而开发的定制方法。 大学的学生将能够进行动手实验,这些实验以前仅限于少数设施的光束线科学家。拟议的活动将包括成为“圣塔莫尼卡学院/加州大学洛杉矶分校”夏季学者研究计划,开发磁性设备上的高中课程,每年撰写一篇文章,涵盖科学和工程女性的一篇文章。提供更多细节,拟议的研究将创建一类新的微型电磁型四极杆,用于聚焦电子束。电子束在许多应用领域都产生了深远的影响,从世界上最精确的显微镜到靶向癌症的消融。直到最近,所有这些应用都依靠大型,昂贵的实验室设备来产生和加速电子束。例如,存储环和线性相干光源允许以前所未有的时间(飞秒)和空间(Angstrom)分辨率进行成像成像,通常在公里范围内的设施中容纳。最近的进步使芯片上的厘米尺度加速器能够加速电子束至相对论速度,与千分钟尺度设施的速度相当。尽管这些结果是有希望的,但仍然存在一个关键的障碍:目前没有芯片尺度的方法可以将这些下一代加速器产生的光束聚焦。灵感来自不对称的四极杆,这些四极杆使用磁场梯度将电子梁聚焦在矩形孔径中,这项工作提出了设计,捏造和表征一类新的微型矩形四极杆。但是,大规模的矩形四极无法直接将小型化。必须开发新的设计以适应特定于小规模制造的制造约束,并且必须开发出新的制造方法,以在中尺度尺寸范围内构建设备,该范围属于微型制造和标准制造可以舒适地运行的区域之间。所提出的设备将提供焦点梯度的20倍,并适合比当前最新矩形四极小的七个数量级。如果成功的话,这将是有史以来首次使用芯片尺度设备对相对论电子光束进行的专注。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估的评估来支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Focusing of a relativistic electron beam with a microfabricated quadrupole magnet
  • DOI:
    10.1103/physrevaccelbeams.26.042401
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    B. Pound;R. Candler;S. Crisp;A. Ody;P. Musumeci;J. Rosenzweig
  • 通讯作者:
    B. Pound;R. Candler;S. Crisp;A. Ody;P. Musumeci;J. Rosenzweig
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Candler其他文献

Robert Candler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Candler', 18)}}的其他基金

Student Travel for the 18th International Conference on Solid-State Sensors, Actuators and Microsystems
第 18 届固态传感器、执行器和微系统国际会议的学生旅行
  • 批准号:
    1550387
  • 财政年份:
    2015
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
CAREER: Microscale Magnetic Devices for Next Generation Coherent X-Ray Sources
职业:用于下一代相干 X 射线源的微型磁性器件
  • 批准号:
    1350034
  • 财政年份:
    2014
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
BRIGE: Time-resolved Surface Damping in Nanoscale Resonators for Monitoring of Biological/Chemical Reactions
BRIGE:纳米级谐振器中的时间分辨表面阻尼,用于监测生物/化学反应
  • 批准号:
    0926228
  • 财政年份:
    2009
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于液态金属弹性体的磁/温控导体绝缘体转变特性和机理研究
  • 批准号:
    52301193
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酶活动态可调的磁响应纳米杂化尿酸酶的构建及其体内抗痛风性能研究
  • 批准号:
    32371456
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
共振磁扰动影响高密度等离子体边界湍流输运和辐射热不稳定性的研究
  • 批准号:
    12375218
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于磁-热场映射参数解耦辨识的永磁体健康状态监测方法研究
  • 批准号:
    52307048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
  • 批准号:
    10641225
  • 财政年份:
    2023
  • 资助金额:
    $ 34.32万
  • 项目类别:
Assessment of Behavioral Deficits in Minipig Model of Pediatric Concussion
小型猪脑震荡模型行为缺陷的评估
  • 批准号:
    10710194
  • 财政年份:
    2022
  • 资助金额:
    $ 34.32万
  • 项目类别:
Assessment of Behavioral Deficits in Minipig Model of Pediatric Concussion
小型猪脑震荡模型行为缺陷的评估
  • 批准号:
    10610655
  • 财政年份:
    2022
  • 资助金额:
    $ 34.32万
  • 项目类别:
Development of compact superconducting magnetic energy storage devices for volume demand based on the silicon microfabrication technology
基于硅微加工技术开发满足批量需求的紧凑型超导磁储能装置
  • 批准号:
    19H02195
  • 财政年份:
    2019
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating Neurological Injury Patterns in the Minipig Following Impact
研究小型猪撞击后的神经损伤模式
  • 批准号:
    9512048
  • 财政年份:
    2017
  • 资助金额:
    $ 34.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了