MRI: Acquisition of Major Research Instrumentation for Advanced Photoelectron Spectroscopy with Spin, Angle and Spatial Resolution
MRI:采购具有自旋、角度和空间分辨率的先进光电子能谱的主要研究仪器
基本信息
- 批准号:0923125
- 负责人:
- 金额:$ 59.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0923125MannellaU. of Tennessee KnoxvilleTechnical Summary: Besides growth and characterizion capabilities with systematic transport and structural studies, detailed investigations of the electronic structure of advanced materials are essential in order to advance our understanding of the fundamental underpinnings of their properties. Photoemission Spectroscopy (PES) is one of the most powerful techniques for characterizing the electronic structure of materials. We propose the realization of a laboratory-based PES user facility for analysis of the chemical and electronic properties of various forms of condensed matter that are at the forefront of scientific and technological innovation. These include Correlated Oxides, Physics of Low Dimensional Systems (surfaces, interfaces, and nanophase materials), Materials for Solar Energy Conversion, Thin film superconductors, Magnetic Semiconductors and Nanostructures, Hydrogen Storage, Lunar rocks and Soils, Water Hydration of Minerals, Characterizattion of Electronics (PCBs) and Biomedical Devices for Drug Delivery. The spectrometer presents truly unique characteristics such as 1) a monochromatized x-ray source with two different energies (Al K?Ñ = 1486 eV and Ag L?Ñ?n? 2984 eV) with micro-spot of ?l 130 ?Ým for analysis of very small or inhomogeneous samples, and 2) a state-of-the-art hemispherical electron analyzer provisioned with a mini-Mott detector for electron spin detection. The facility will be an asset for the UT system and for a broad range of UTK departments ranging from Physics, Chemistry, Geology, Biology, and Material Engineering, and it is thus expected to nucleate interdisciplinary research covered under several NSF program areas. The proposed instrument will be based on campus, so that our students and faculty can have easy access and copious amounts of time using a state-of-the-art electron spectrometer. The proposed science and supporting infrastructure will provide an excellent setting for the education and training of internationally competitive students and postdocs from several departments. The instrument will not only complement, but also enhance the productivity of investigations carried out at facilities such as the Spallation Neutron Source (SNS), the Center for Nanophase Materials Sciences (CNMS), the Joint Institute for Advanced Materials (JIAM) which render UTK a unique place in the nation for advanced materials research. The addition of the multiple-user photoemission facility hereby proposed will grant UTK an invaluable asset for becoming a leading world-wide institution for materials characterization, research and development. Laymen Summary: Materials are the building blocks of every form of solid matter naturally existing in the universe or manufactured by humankind. The onset of new materials has always marked a major turning point in human society, with the material of choice of a given era often being its defining point. More recently, impressive advances in materials synthesis have resulted in the discovery of an ever-increasing number of complex materials exhibiting exotic properties at the forefront of promising revolutionary technological applications ranging from engineering to biotechnology. Detailed investigations of the electronic structure are essential in order to advance our understanding of the properties of advanced material. We propose the realization of a laboratory-based user facility for carrying out experiments using Photoelectron Spectroscopy, one of the most powerful techniques for measuring the electronic structure and chemical nature of materials. This instrumentation will be used to investigate the electronic properties of a wide variety of materials, including Materials for Solar Energy Conversion and Hydrogen Storage, Superconductors, Magnetic materials for data storage, Polymers, Catalysts, Biomedical Devices for Drug Delivery, Nanostructures, Lunar rocks and Soil, Biological Cells, Bacteria and Minerals. The facility will be an asset for the UT system and for a broad range of UTK departments ranging from Physics, Chemistry, Geology, Biology, and Material Engineering, and it is thus expected to nucleate interdisciplinary research. The proposed instrument will be based on campus, so that our students and faculty can have easy access and copious amounts of time using a state-of-the-art electron spectrometer. The proposed science and supporting infrastructure will provide an excellent setting for the education and training of internationally competitive students and postdocs from several departments. The instrument will not only complement, but also enhance the productivity of investigations carried out at other existing facilities which render UTK a unique place in the nation for advanced materials research. The addition of the multiple-user photoemission facility hereby proposed will grant UTK an invaluable asset for becoming a leading world-wide institution for materials characterization, research and development.
0923125Mannellau。田纳西州诺克斯维勒技术的摘要:除了系统运输和结构研究外,对高级材料的电子结构的详细研究对于促进我们对其性质的基本基础的理解至关重要。光发射光谱(PES)是表征材料电子结构的最强大技术之一。我们建议实现基于实验室的PES用户设施,以分析科学和技术创新的最前沿的各种形式的冷凝物质的化学和电子性能。这些包括相关的氧化物,低维系统(表面,界面和纳米载体材料)的物理学,太阳能转化的材料,薄膜超导体,磁性半导体和纳米结构,氢存储,月球岩石和土壤,矿物质的水分,矿物质的水分,pcbs(PCBS)的特征(PCBS)以及药物供应Devices。光谱仪呈现出真正独特的特征,例如1)单色X射线源,具有两个不同的能量(Al k?n = 1486 eV和ag l?n?n?2984 eV),具有微量的微点?l 130?m,用于分析非常小的或不均匀的样品,并提供了一个状态的电气化材料,并提供了一个较小的电气化材料。检测。该设施将成为UT系统的资产,以及从物理,化学,地质,生物学和材料工程的广泛部门的广泛部门,因此有望在几个NSF计划领域涵盖的核对学科研究中进行核对。拟议的乐器将基于校园,以便我们的学生和教职员工可以使用最先进的电子光谱仪轻松访问和大量的时间。拟议的科学和支持基础设施将为来自多个部门的国际竞争学生和博士后的教育和培训提供一个绝佳的设置。该仪器不仅将完成,而且还可以提高在诸如spallation Neutron Source(SNS),纳米相材料科学中心(CNMS),高级材料研究所(JIAM)等设施等设施上进行的投资的生产率。拟议中的多用户光发射设施的增加将授予UTK成为一家不可估量的资产,以成为材料表征,研发和开发的全球领先机构。外行摘要:材料是宇宙中自然存在或由人类制造的每种形式的固体物质的基础。新材料的发作始终标志着人类社会的一个主要转折点,选择给定时代的材料通常是其决定点。最近,材料合成的令人印象深刻的进步导致发现了越来越多的复杂材料,这些复杂材料在有希望的革命性技术应用的最前沿,从工程到生物技术。对电子结构的详细研究对于提高我们对高级材料特性的理解至关重要。我们建议实现基于实验室的用户设施,用于使用光电素光谱进行实验,这是测量材料的电子结构和化学性质的最强大技术之一。该仪器将用于研究各种材料的电子性能,包括用于太阳能转化和氢存储的材料,超导体,数据存储的磁性材料,聚合物,催化剂,用于药物输送的生物医学设备,纳米结构,月球岩石,月球岩石和土壤,土壤,生物细胞,细菌和矿物质。该设施将是UT系统的资产,以及从物理,化学,地质,生物学和材料工程的广泛的UTK部门的资产,因此有望核对跨学科研究。拟议的乐器将基于校园,以便我们的学生和教职员工可以使用最先进的电子光谱仪轻松访问和大量的时间。拟议的科学和支持基础设施将为来自多个部门的国际竞争学生和博士后的教育和培训提供一个绝佳的设置。该工具不仅将完成,而且还可以增强在其他现有设施上进行的投资产品,这使UTK成为美国高级材料研究的独特场所。拟议中的多用户光发射设施的增加将授予UTK成为一家不可估量的资产,以成为材料表征,研发和开发的全球领先机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norman Mannella其他文献
Energy gap in the failed high-Tc superconductor La_<1. 875> Ba_<0. 125> CuO_4
失效高温超导体的能隙La_<1。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Rui-Hua He;Kiyohisa Tanaka;Sung-Kwan Mo;Takao Sasagawa;Masaki Fujita;Tadashi Adachi;Norman Mannella;Kazuyoshi Yamada;Yoji Koike;Zahid Hussain;Zhi-Xun Shen - 通讯作者:
Zhi-Xun Shen
Norman Mannella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norman Mannella', 18)}}的其他基金
CAREER: Sub-Picosecond Electron Dynamics in Complex Electron Systems
职业:复杂电子系统中的亚皮秒电子动力学
- 批准号:
1151687 - 财政年份:2012
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
Expanding the Capabilities of Photoelectron Spectroscopy as to Reveal the Coupling of Different Degrees of Freedom in Complex Electron Systems
扩展光电子能谱的能力以揭示复杂电子系统中不同自由度的耦合
- 批准号:
0804902 - 财政年份:2008
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
相似国自然基金
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体三羧酸循环酶入核调控小鼠二细胞期全能性获得的功能和机制研究
- 批准号:32300608
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
- 批准号:82360657
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
- 批准号:82360461
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Evaluating a Novel Method to Determine the rTMS Dose Needed for Treating Depression After Spinal Cord Injury
评估一种确定治疗脊髓损伤后抑郁症所需 rTMS 剂量的新方法
- 批准号:
10539436 - 财政年份:2022
- 资助金额:
$ 59.22万 - 项目类别:
Computational Mechanisms of Effort-Cost Decision-Making in Schizophrenia
精神分裂症的努力成本决策的计算机制
- 批准号:
10653988 - 财政年份:2021
- 资助金额:
$ 59.22万 - 项目类别:
Characterizing constructs of motivation and the midbrain dopaminergic system in depression with ultra-high field MRI
用超高场 MRI 表征抑郁症患者的动机和中脑多巴胺能系统的结构
- 批准号:
10119809 - 财政年份:2019
- 资助金额:
$ 59.22万 - 项目类别:
Characterizing constructs of motivation and the midbrain dopaminergic system in depression with ultra-high field MRI
用超高场 MRI 表征抑郁症患者的动机和中脑多巴胺能系统的结构
- 批准号:
10439716 - 财政年份:2019
- 资助金额:
$ 59.22万 - 项目类别:
Characterizing constructs of motivation and the midbrain dopaminergic system in depression with ultra-high field MRI
用超高场 MRI 表征抑郁症患者的动机和中脑多巴胺能系统的结构
- 批准号:
10166618 - 财政年份:2019
- 资助金额:
$ 59.22万 - 项目类别: