Expanding the Capabilities of Photoelectron Spectroscopy as to Reveal the Coupling of Different Degrees of Freedom in Complex Electron Systems

扩展光电子能谱的能力以揭示复杂电子系统中不同自由度的耦合

基本信息

  • 批准号:
    0804902
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractComplex electron systems with unusual properties, such as magnetism and superconductivity or large resistivity in a magnetic field, promise revolutionary technological applications. A unifying characteristic of these systems is the capability of exhibiting spectacular and unexpected phenomena arising from the interplay and competition of several intrinsic properties such as charge, crystal structure and magnetism. Unraveling the details of this interplay will help us understand the physics behind the functionality of complex materials. This project pursues the objectives of growing novel oxide materials and studying them in-situ with optical and x-ray techniques. Studies of previously characterized systems will also be made for comparison. The different tasks and project activities are designed with the goals to reach out to undergraduate and high school students, contribute to science infrastructure and integrate science and education. Educational/research programs will be available to allow the participation of students ranging from high school to graduate level. Intellectual infrastructure of this project is expected to aid in the development of new magnetic and superconducting devices.Technical AbstractTransition metal oxides such as cuprate high temperature superconductors and colossal magnetoresistive manganites are prototypical complex electron systems with unusual properties promising revolutionary technological applications. A unifying characteristic of these systems is the capability of exhibiting spectacular and unexpected phenomena arising from the interplay and competition of several intrinsic properties such as charge, lattice and spin. Unraveling the details of this interplay will consolidate our understanding of the physics at play behind the functionality of complex materials. This project pursues two main objectives, namely the carrying out of 1) the growth with Molecular Beam Epitaxy and in-situ Angle Resolved Photoemission studies of binary oxides, Fe3O4, VOx, EuO and V2O3, which will function as models systems for studying the many-body physics at play in more complex materials, and 2) time-resolved photoemission experiments on well-characterized systems, either with ultrafast optical techniques and/or x-rays, or whose nature of the interactions has already been extensively investigated with static measurements. The accomplishment of these goals on well-characterized systems will form a solid body of experience for extending the project to more complex materials. The different tasks and project activities are designed with the goals to reach out to undergraduate and high school students, contribute to science infrastructure and integrate science and education. Educational/research programs will be available to allow the participation of students ranging from high school to graduate level. Intellectual infrastructure of this project is expected to aid in the development of new magnetic and superconducting devices.
具有异常特性的非技术抽象复合电子系统,例如磁场和超导性或磁场中的大电阻率,承诺革命性的技术应用。这些系统的一个统一特征是表现出由几种内在特性(例如电荷,晶体结构和磁性)的相互作用和竞争引起的壮观和意外现象的能力。揭开此相互作用的细节将有助于我们了解复杂材料功能背后的物理学。该项目追求种植新型氧化物材料并使用光学和X射线技术对其进行研究的目标。还将对先前表征的系统进行研究。不同的任务和项目活动的设计具有与本科生和高中生联系的目标,为科学基础设施做出了贡献,并整合了科学和教育。教育/研究计划将可以允许从高中到研究生水平的学生参与。 预计该项目的智力基础架构有助于开发新的磁性和超导器件。技术抽象发射金属氧化物,例如铜酸盐高温超导体和巨大的磁磁铁锰矿是具有与众不同的革命技术的原型复杂电子系统。这些系统的一个统一特征是表现出由诸如电荷,晶格和自旋等几种内在特性的相互作用和竞争引起的壮观和意外现象的能力。揭开此相互作用的细节将巩固我们对复杂材料功能背后物理学的理解。该项目追求两个主要目标,即进行1)分子束外延和原位角度的增长解决了对二元氧化物,FE3O4,VOX,EUO和V2O3的光发射研究,该研究将起作用的模型,可在更复杂的材料中进行多种体现,以及2)在更复杂的材料中进行了多种体质,并将其运行。技术和/或X射线,或者已经通过静态测量对相互作用的性质进行了广泛的研究。这些目标在特定的系统上实现了这些目标,将形成稳固的经验,以将项目扩展到更复杂的材料。不同的任务和项目活动的设计具有与本科生和高中生联系的目标,为科学基础设施做出了贡献,并整合了科学和教育。教育/研究计划将可以允许从高中到研究生水平的学生参与。 该项目的智力基础设施有望有助于开发新的磁性和超导设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norman Mannella其他文献

Energy gap in the failed high-Tc superconductor La_<1. 875> Ba_<0. 125> CuO_4
失效高温超导体的能隙La_<1。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui-Hua He;Kiyohisa Tanaka;Sung-Kwan Mo;Takao Sasagawa;Masaki Fujita;Tadashi Adachi;Norman Mannella;Kazuyoshi Yamada;Yoji Koike;Zahid Hussain;Zhi-Xun Shen
  • 通讯作者:
    Zhi-Xun Shen

Norman Mannella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Norman Mannella', 18)}}的其他基金

CAREER: Sub-Picosecond Electron Dynamics in Complex Electron Systems
职业:复杂电子系统中的亚皮秒电子动力学
  • 批准号:
    1151687
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of Major Research Instrumentation for Advanced Photoelectron Spectroscopy with Spin, Angle and Spatial Resolution
MRI:采购具有自旋、角度和空间分辨率的先进光电子能谱的主要研究仪器
  • 批准号:
    0923125
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

集成光电子器件制造的功能微结构精度形成机理及其控制
  • 批准号:
    U22A20200
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
柔性OLED显示与紫外探测双功能光电子器件技术研究
  • 批准号:
    U21A20492
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
单片集成微纳光子结构的硅衬底GaN基多功能光电子芯片研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
面向分子器件的新型低维功能结构的构筑与调控
  • 批准号:
    61901038
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目
面向光电子器件的功能化侧链盘状液晶聚合物分子工程
  • 批准号:
    21875098
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Impact of Dynamic Capabilities, Technological Readiness and Information Exchange Capabilities on the Resilience and Performance of Circular Supply Chains
动态能力、技术准备度和信息交换能力对循环供应链的弹性和绩效的影响
  • 批准号:
    24K05087
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
肝癌薬物療法における奏功性に関わるケモカインの同定と治療標的としての可能性
鉴定与肝癌药物治疗有效性相关的趋化因子及其作为治疗靶点的潜力
  • 批准号:
    24K11106
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Adding AI-powered analysis capabilities to Lifelancer platform
为 Lifelancer 平台添加人工智能分析功能
  • 批准号:
    10089687
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
  • 批准号:
    2327313
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了