A Mathematical Study of the Biochemical and Electrical Dynamics of Pancreatic Islets

胰岛生化和电动力学的数学研究

基本信息

  • 批准号:
    0917664
  • 负责人:
  • 金额:
    $ 23.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The long-term goal of this research project is to understand how the many subsystems of the pancreatic beta-cell interact to produce insulin oscillations in mice (rats and humans also exhibit oscillations). These oscillations are crucial for the normal regulation of blood glucose levels, and loss of oscillations is linked to type II diabetes. Rhythmic insulin secretion from pancreatic islets of Langerhans is due to rhythmic bursting electrical activity in the beta-cells, and a consequent rhythm in the intracellular calcium concentration. Both the intracellular calcium and adenosine triphosphate (ATP) feed back onto the cell's electrical subsystem, opening or closing ion channels and thus affecting the cell's electrical activity. This project focuses on the metabolic subsystem that produces ATP, and on a mathematical analysis of previously-developed models of metabolismdriven bursting and the fast electrical bursting that occurs in single beta-cells that are isolated from the islet. The central hypothesis is that the slow electrical bursting oscillations and episodic bursting that are often exhibited by pancreatic islets, and that have the same period as insulin oscillations observed in vivo, are driven by oscillations in metabolism. One mechanism for these oscillations is in glycolysis, the first stage of glucose metabolism. However, it is possible that oscillations inherent in one of the other two stages of metabolism, the citric acid cycle and oxidative phosphorylation, could be the slow process that drives slow bursting activity and that clusters faster bursts together into periodic episodes. This possibility will be investigated using mathematical modeling and analysis, as will what measurements of periodicity in citric acid cycle intermediates indicate about the mechanism of the oscillations. Returning to the glycolytic component of metabolism, modeling studies will be conducted in parallel with experimental studies in a collaborating laboratory to determine how the enzyme phosphosphofructokinase-2 (PFK-2) may modulate glycolytic oscillations.Insulin secretion in mammals, including rats, humans, dogs, and humans, is pulsatile, with a period of about five minutes. These insulin oscillations, which can be measured in the blood, are important for normal glucose homeostasis, since disruption of the oscillations is linked to type II diabetes. Insulin is secreted from micro-organs in the pancreas called Islets of Langerhans, composed largely of insulin-secreting beta-cells. For more than a decade now, the principal investigator has been investigating the biophysical mechanism for the oscillations in insulin secretion. This research involves mathematical modeling and analysis, and parallel experimental studies in a collaborating laboratory. It is thus a truly multidisciplinary project. The current project uses a current mathematical model of pancreatic beta-cells to understand how oscillations in the metabolism of glucose by the beta-cells can lead to oscillations in the electrical activity and insulin secretion from the beta-cells. In addition, bifurcation analysis and recent mathematical methods in the area of Mixed Mode Oscillations will be used to understand the oscillatory electrical activity of beta-cells that have been isolated from an islet. The intention is to determine, using this mathematical analysis, how single-cell behavior is converted to the very different behavior of beta-cells in an intact islet. The long-term goal of this research is to better understand the normal functioning of islets, which will ultimately provide insights into the dysfunction of islets that occurs in type II diabetes.
该奖项根据 2009 年《美国复苏和再投资法案》(公法 111-5)提供资金。该研究项目的长期目标是了解胰腺β细胞的许多子系统如何相互作用以在小鼠体内产生胰岛素振荡(大鼠和人类也表现出胰岛素振荡)。这些振荡对于血糖水平的正常调节至关重要,而振荡的丧失与 II 型糖尿病有关。朗格汉斯胰岛有节律的胰岛素分泌是由于β细胞中有节律的爆发性电活动以及随之而来的细胞内钙浓度的节律。 细胞内钙和三磷酸腺苷 (ATP) 都会反馈到细胞的电子系统,打开或关闭离子通道,从而影响细胞的电活动。该项目重点关注产生 ATP 的代谢子系统,并对先前开发的代谢驱动爆发模型和从胰​​岛分离的单个 β 细胞中发生的快速电爆发模型进行数学分析。 核心假设是,胰岛经常表现出的缓慢电爆发振荡和偶发爆发,并且与体内观察到的胰岛素振荡具有相同的周期,是由代谢振荡驱动的。这些振荡的一个机制是糖酵解,即葡萄糖代谢的第一阶段。然而,代谢的其他两个阶段之一(柠檬酸循环和氧化磷酸化)固有的振荡可能是驱动缓慢爆发活动的缓慢过程,并且将更快的爆发聚集在一起形成周期性发作。将使用数学建模和分析来研究这种可能性,以及柠檬酸循环中间体的周期性测量表明振荡机制。回到代谢的糖酵解部分,模型研究将与合作实验室的实验研究同时进行,以确定磷酸果糖激酶-2 (PFK-2) 如何调节糖酵解振荡。哺乳动物(包括大鼠、人类)的胰岛素分泌狗和人类都是脉动的,周期约为五分钟。这些可以在血液中测量的胰岛素振荡对于正常的葡萄糖稳态很重要,因为振荡的破坏与 II 型糖尿病有关。胰岛素是由胰腺中称为胰岛的微器官分泌的,该微器官主要由分泌胰岛素的β细胞组成。十多年来,主要研究人员一直在研究胰岛素分泌波动的生物物理机制。这项研究涉及数学建模和分析,以及合作实验室的并行实验研究。因此,这是一个真正的多学科项目。当前的项目使用胰腺β细胞的当前数学模型来了解β细胞葡萄糖代谢的振荡如何导致β细胞电活动和胰岛素分泌的振荡。此外,混合模式振荡领域的分叉分析和最新数学方法将用于了解从胰岛分离的β细胞的振荡电活动。目的是利用这种数学分析确定单细胞行为如何转化为完整胰岛中β细胞的非常不同的行为。这项研究的长期目标是更好地了解胰岛的正常功能,这最终将深入了解 II 型糖尿病中出现的胰岛功能障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Bertram其他文献

Investigating Heterogeneity of Intracellular Calcium Dynamics in Anterior Pituitary Lactotrophs Using a Combined Modelling/Experimental Approach
使用组合建模/实验方法研究垂体前叶泌乳素细胞内钙动态的异质性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Maurizio Tomaiuolo;Richard Bertram;A. González;J. Tabak
  • 通讯作者:
    J. Tabak
KATP channel activity and slow oscillations in pancreatic beta cells are regulated by mitochondrial ATP production
胰腺 β 细胞中的 KATP 通道活性和缓慢振荡受线粒体 ATP 产生的调节
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremías Corradi;B. Thompson;Patrick A Fletcher;Richard Bertram;A. Sherman;Leslie S Satin
  • 通讯作者:
    Leslie S Satin
Modeling N-methyl-d-aspartate-induced bursting in dopamine neurons
模拟 N-甲基-d-天冬氨酸诱导的多巴胺神经元爆发
  • DOI:
    10.1016/0306-4522(95)00483-1
  • 发表时间:
    1996-03-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Y‐X. Li;Richard Bertram;John Rinzel
  • 通讯作者:
    John Rinzel
Investigating Heterogeneity of Intracellular Calcium Dynamics in Anterior Pituitary Lactotrophs Using a Combined Modelling/Experimental Approach
使用组合建模/实验方法研究垂体前叶泌乳素细胞内钙动态的异质性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Maurizio Tomaiuolo;Richard Bertram;A. González;J. Tabak
  • 通讯作者:
    J. Tabak
NEGATIVE FEEDBACK BY CALCIUM: THE ROAD FROM CHAY-KEIZER
钙的负反馈:来自 Chay-Keizer 的道路

Richard Bertram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Bertram', 18)}}的其他基金

eMB: New Approaches for Interpreting Neural Responses to Behaviorally-Relevant Sensory Stimuli
eMB:解释对行为相关感官刺激的神经反应的新方法
  • 批准号:
    2324962
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Continuing Grant
Multi-timescale Analysis of Cellular Electrical Activity
细胞电活动的多时间尺度分析
  • 批准号:
    1853342
  • 财政年份:
    2019
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Analysis and Extension of a Model for Oscillatory Islet Activity
振荡胰岛活动模型的分析和扩展
  • 批准号:
    1612193
  • 财政年份:
    2016
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Mathematical Analysis of Electrical Oscillations in Anterior Pituitary Cells
垂体前叶细胞电振荡的数学分析
  • 批准号:
    1220063
  • 财政年份:
    2012
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Oscillation and Synchronization of Pancreatic Islet Activity
胰岛活动的振荡和同步
  • 批准号:
    0613179
  • 财政年份:
    2006
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Phantom Bursting Models and Complex Bursting Patterns in Pancreatic Islets
胰岛的幻影破裂模型和复杂破裂模式
  • 批准号:
    0311856
  • 财政年份:
    2003
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Modeling and Analysis of Multimodal Bursting in Pancreatic Beta-Cells
胰腺β细胞多模态爆发的建模和分析
  • 批准号:
    9981822
  • 财政年份:
    1999
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不完备多视图学习与缺失信息复原研究
  • 批准号:
    62372136
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
病理图像深度学习可解释性关键技术研究
  • 批准号:
    62371409
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
A Study of the Process of State Formation in Maya Society from the Perspective of the Distribution of Cross-Cultural Style Prestige Materials
从跨文化风格威望材料分布的角度研究玛雅社会的国家形成过程
  • 批准号:
    22KJ2842
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Generalized fluctuation test for deciphering phenotypic switching within cell populations
破译细胞群内表型转换的广义波动测试
  • 批准号:
    10552300
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
Innovative therapeutic strategies to support elimination of river blindness
支持消除河盲症的创新治疗策略
  • 批准号:
    10754120
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
Cyclic stretch of bicuspid aortic valves: elucidating its implications for cell signaling and tissue mechanics.
二叶式主动脉瓣的循环拉伸:阐明其对细胞信号传导和组织力学的影响。
  • 批准号:
    10607130
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了