RI: Small: Computational Models of Context-awareness and Selective Attention for Persistent Visual Target Tracking

RI:小型:持续视觉目标跟踪的上下文感知和选择性注意的计算模型

基本信息

  • 批准号:
    0916607
  • 负责人:
  • 金额:
    $ 37.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Although persistent and long-duration tracking of general targets is a basic function in the human vision system, this task is quite challenging for computer vision algorithms, because the visual appearances of real world targets vary greatly and the environments are heavily cluttered and distractive. This large gap has been a bottleneck in many video analysis applications. This project aims to bridge this gap and to overcome the challenges that confront the design of long-duration tracking systems, by developing new computational models to integrate and represent some important aspects in the human visual perception of dynamics, including selective attention and context-awareness that have been largely ignored in existing computer vision algorithms. This project performs in-depth investigations of a new computational paradigm, called the synergetic selective attention model that integrates four processes: the early selection process that extracts informative attentional regions (ARs), the synergetic tracking process that estimates the target motion based on these ARs, the robust integration process that resolves the inconsistency among the motion estimates of these ARs for robust information fusion, and the context-aware learning process that performs late selection and learning on-the-fly to discover contextual associations and to learn discriminative-ARs for adaptation. This research enriches the study of visual motion analysis by accommodating aspects from the human visual perception and leads to significant improvements for video analysis. It benefits many important areas including intelligent video surveillance, human-computer interaction and video information management. The project is linked to educational activities to promote learning and innovation through curriculum development, research opportunities, knowledge dissemination through conferences and the internet as well as other outreach activities, and the involvements of underrepresented groups.
尽管对一般目标的持久和长期跟踪是人类视觉系统的基本功能,但对于计算机视觉算法而言,这项任务非常具有挑战性,因为现实世界目标的视觉外观差异很大,而且环境越来越杂乱无章。在许多视频分析应用程序中,这个较大的差距一直是瓶颈。该项目旨在通过开发新的计算模型来整合并代表人类对动态的视觉感知的一些重要方面,包括在现有的计算机视觉算法中忽略了人们在人体视觉上的视觉感知,包括在人类对动态的视觉感知中综合和代表一些重要方面,以克服这一差距并克服面临长期跟踪系统设计的挑战。 This project performs in-depth investigations of a new computational paradigm, called the synergetic selective attention model that integrates four processes: the early selection process that extracts informative attentional regions (ARs), the synergetic tracking process that estimates the target motion based on these ARs, the robust integration process that resolves the inconsistency among the motion estimates of these ARs for robust information fusion, and the context-aware learning process that performs late选择和学习,以发现上下文关联并学习适应性的歧视性。 这项研究通过适应人类视觉感知的各个方面来丰富视觉运动分析的研究,并导致视频分析的重大改进。它有益于许多重要领域,包括智能视频监视,人为计算机互动和视频信息管理。 该项目与教育活动有关,旨在通过课程发展,研究机会,通过会议和互联网以及其他外展活动以及代表性不足的群体的参与来促进学习和创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Wu其他文献

MOTION SEGMENTATION BASED ON INDEPENDENT SUBSPACE ANALYSIS
基于独立子空间分析的运动分割
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhimin Fan;Jie Zhou;Ying Wu
  • 通讯作者:
    Ying Wu
Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance
氮掺杂多孔碳管中的空间限制和化学键合非晶红磷具有优异的钠存储性能
  • DOI:
    10.1039/c9ta01039d
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Wu;Feifei Xing;Rui Xu;Xiaolong Cheng;Dongjun Li;Xuefeng Zhou;Qiaobao Zhang;Yan Yu
  • 通讯作者:
    Yan Yu
Synchronous Shifts in Nutrients and Organic Carbon Responses Over the Diatom-to-Dinoflagellate Succession
硅藻到甲藻演替过程中养分和有机碳响应的同步变化
  • DOI:
    10.3389/fmars.2022.845372
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaolu Wang;Shan Jiang;Ying Wu;Yanna Wang
  • 通讯作者:
    Yanna Wang
Integrating unlabeled images for image retrieval based on relevance feedback
基于相关性反馈整合未标记图像进行图像检索
A Fast Tensor Completion Method Based on Tensor QR Decomposition and Tensor Nuclear Norm Minimization
基于张量QR分解和张量核范数最小化的快速张量补全方法

Ying Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Wu', 18)}}的其他基金

RI: Small: Visual Reasoning and Self-questioning for Explainable Visual Question Answering
RI:小:视觉推理和自我质疑以实现可解释的视觉问答
  • 批准号:
    2007613
  • 财政年份:
    2020
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: A Unified Compositional Model for Explainable Video-based Human Activity Parsing
RI:小型:用于可解释的基于视频的人类活动解析的统一组合模型
  • 批准号:
    1815561
  • 财政年份:
    2018
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Modeling and Learning Visual Similarities Under Adverse Visual Conditions
RI:小:在不利视觉条件下建模和学习视觉相似性
  • 批准号:
    1619078
  • 财政年份:
    2016
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Mining and Learning Visual Contexts for Video Scene Understanding
RI:小:挖掘和学习视频场景理解的视觉上下文
  • 批准号:
    1217302
  • 财政年份:
    2012
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sino-USA Summer School in Vision, Learning, Pattern Recognition VLPR 2010
合作研究:中美视觉、学习、模式识别暑期学校 VLPR 2010
  • 批准号:
    1037944
  • 财政年份:
    2010
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
CAREER: Visual Analysis of High-Dimensional Motion: A Distributed/Collaborative Approach
职业:高维运动的可视化分析:分布式/协作方法
  • 批准号:
    0347877
  • 财政年份:
    2004
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Continuing Grant
Transductive Learning for Retrieving and Mining Visual Contents
用于检索和挖掘视觉内容的转化学习
  • 批准号:
    0308222
  • 财政年份:
    2003
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
  • 批准号:
    82304385
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于加权隐私保护计算的非小细胞肺癌辅助诊断方法研究
  • 批准号:
    62301006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
  • 批准号:
    62303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向异柠檬酸裂解酶(ICL1)的抗结核小分子共价抑制机理的理论计算研究
  • 批准号:
    22303075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算流体动力学的太阳系复杂形状小天体正高系统建模研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Computational Imaging for Underwater Exploration
RI:小型:水下勘探的计算成像
  • 批准号:
    2225948
  • 财政年份:
    2022
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Computational Imaging for Underwater Exploration
RI:小型:水下勘探的计算成像
  • 批准号:
    2122068
  • 财政年份:
    2021
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Modeling Co-Decisions: A Computational Framework Using Language and Metadata
RI:小型:共同决策建模:使用语言和元数据的计算框架
  • 批准号:
    2008761
  • 财政年份:
    2020
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
  • 批准号:
    2100885
  • 财政年份:
    2020
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
RI: Small: Computational Social Choice: For the People
RI:小:计算社会选择:为了人民
  • 批准号:
    2024287
  • 财政年份:
    2020
  • 资助金额:
    $ 37.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了