RI: Small: Computational Imaging for Underwater Exploration

RI:小型:水下勘探的计算成像

基本信息

  • 批准号:
    2122068
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The underwater environment poses great challenges for vision sensing due to the refraction, absorption, and scattering that occurs in the water column. Although a variety of manned vehicles, remotely operated vehicles (ROVs), and autonomous underwater vehicles (AUVs) have been developed for various underwater missions, the vision sensing capacity of these underwater vehicles still stays at a limited level. This project aims at developing novel computational imaging solutions to facilitate underwater robotic tasks, such as autonomous navigation and in-detail sea floor mapping. The project is expected to produce new imaging systems, scene reconstruction algorithms, and control theories that are tailored for underwater vehicles. The project benefits marine research, oil & gas industry, and the military by developing underwater vision systems that decrease the costs, challenges, and risks associated with ocean exploration. The project tightly integrates research with education by introducing new curricula on computer vision and marine robotics. The project will provide training and research experience to both undergraduate and graduate students, in particular women and underrepresented minorities. This project focuses on three specific research objectives: 1) angular ray sampling for nonlinear light transport analysis; 2) underwater reflectance modeling and geometry estimation; and 3) visual perceptive tracking for underwater vehicles. A critical component of this project is to develop a novel angularly sampled imaging system that strategically emits and collects light rays, which allows the analysis of nonlinear light paths through water. Specifically, the team will first investigate the underwater light transport model in presence of refraction, scattering, and absorption. Based on the light transport model, the team will develop new surface reflectance models and three-dimensional shape reconstruction algorithms that follow the physics of underwater ray optics. Finally, the team will integrate the imaging system with underwater vehicles and develop a novel visual perceptive tracking navigation system that leverages the angular ray sampling scheme.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水下环境对水柱中发生的折射,吸收和散射引起的视力感应构成了巨大挑战。 尽管已经为各种水下任务开发了各种各样的载人车,远程操作的车辆(ROV)和自动驾驶水下车辆(AUV),但这些水下车辆的视觉感应能力仍保持有限水平。该项目旨在开发新颖的计算成像解决方案,以促进水下机器人任务,例如自动导航和详细信息映射。预计该项目将生成新的成像系统,场景重建算法以及为水下车辆量身定制的理论。该项目通过开发降低与海洋勘探相关的成本,挑战和风险来使海洋研究,石油和天然气行业以及军事力量受益。该项目通过引入有关计算机视觉和海洋机器人技术的新课程将研究与教育紧密整合。该项目将为本科生和研究生,尤其是妇女和代表性不足的少数民族提供培训和研究经验。该项目侧重于三个特定的研究目标:1)非线性光传输分析的角度射线采样; 2)水下反射率建模和几何估计; 3)水下车辆的视觉感知跟踪。该项目的一个关键组成部分是开发一种新型的角度采样成像系统,该系统从策略上排放和收集光线,从而可以通过水对非线性光路进行分析。具体而言,团队将在折射,散射和吸收的情况下首先研究水下光传输模型。基于轻型传输模型,该团队将开发新的表面反射率模型和遵循水下射线光学物理学的三维重建算法。最后,该团队将将成像系统与水下车辆整合在一起,并开发出一种新型的视觉感知跟踪导航系统,该导航系统利用Angular Ray采样方案。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Jinwei Ye其他文献

Novel Moving-Target Detection Using A Hybrid of RGB Images and LiDAR Point-Clouds
使用 RGB 图像和 LiDAR 点云混合的新型移动目标检测
Learning to Dodge A Bullet: Concyclic View Morphing via Deep Learning
学习躲避子弹:通过深度学习进行共循环视图变形
Polarimetric Helmholtz Stereopsis Supplementary Material
偏振亥姆霍兹立体辅助材料
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuqi Ding;Yu Ji;Mingyuan Zhou;S. B. Kang;Jinwei Ye
    Yuqi Ding;Yu Ji;Mingyuan Zhou;S. B. Kang;Jinwei Ye
  • 通讯作者:
    Jinwei Ye
    Jinwei Ye
3D LiDAR and Color Camera Data Fusion
3D LiDAR 和彩色相机数据融合
Indoor Object Localization and Tracking Using Deep Learning over Received Signal Strength
使用深度学习接收信号强度进行室内物体定位和跟踪
共 7 条
  • 1
  • 2
前往

Jinwei Ye的其他基金

Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Towards Polarimetric Visual Understanding
职业:走向偏振视觉理解
  • 批准号:
    2238141
    2238141
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CRII: RI: General Surface Reconstruction via Polarized Computational Imaging
CRII:RI:通过偏振计算成像进行一般表面重建
  • 批准号:
    2332542
    2332542
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
RI: Small: Computational Imaging for Underwater Exploration
RI:小型:水下勘探的计算成像
  • 批准号:
    2225948
    2225948
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII: RI: General Surface Reconstruction via Polarized Computational Imaging
CRII:RI:通过偏振计算成像进行一般表面重建
  • 批准号:
    1948524
    1948524
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
  • 批准号:
    82304385
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于加权隐私保护计算的非小细胞肺癌辅助诊断方法研究
  • 批准号:
    62301006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
  • 批准号:
    62303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向异柠檬酸裂解酶(ICL1)的抗结核小分子共价抑制机理的理论计算研究
  • 批准号:
    22303075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算流体动力学的太阳系复杂形状小天体正高系统建模研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Computational Imaging for Underwater Exploration
RI:小型:水下勘探的计算成像
  • 批准号:
    2225948
    2225948
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
RI: Small: Modeling Co-Decisions: A Computational Framework Using Language and Metadata
RI:小型:共同决策建模:使用语言和元数据的计算框架
  • 批准号:
    2008761
    2008761
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
  • 批准号:
    2100885
    2100885
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
RI: Small: Computational Social Choice: For the People
RI:小:计算社会选择:为了人民
  • 批准号:
    2024287
    2024287
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant
RI: Small: Collaborative Research: Dynamic Light Transport Acquisition and Applications to Computational Illumination
RI:小型:合作研究:动态光传输采集及其在计算照明中的应用
  • 批准号:
    1909729
    1909729
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
    $ 49.95万
  • 项目类别:
    Standard Grant
    Standard Grant