Collaborative Research: Atomistic Mechanisms of Stabilizing Oxide Nanoparticles in Oxide-dispersion Strengthened Structural Materials
合作研究:氧化物弥散强化结构材料中氧化物纳米颗粒稳定的原子机制
基本信息
- 批准号:0906344
- 负责人:
- 金额:$ 18.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: The survival of materials under conditions of high temperature and radiation is crucial to their application in nuclear energy, space, and other applications under extreme conditions. Metal alloys can be strengthened by the dispersion of small (nanoscale) oxide particles. Yttrium titanium oxide nanoparticles greatly enhance the thermo-mechanical and radiation-resistant properties of such oxide-dispersion strengthened (ODS) alloys. It is scientifically challenging but technologically necessary to understand the exceptionally-high stability of these nanoparticles under extreme environments in order to develop advanced structural materials with enhanced performance. By synergy of experimental efforts and multi-scale computer simulations, the researchers at RPI and UC Davis will advance the understanding and control of transformation and structural evolution of such nanoparticles. This research program will train both graduate and undergraduate students working in key fields of radiation effects and the development of advanced structural materials. Special efforts will be made to involve underrepresented students, particularly woman engineers, into science and engineering through various programs at RPI and UC Davis. The fundamental understanding will contribute to the development of a dual-level course of ?radiation effects and nuclear reactor materials? at RPI. Findings of this project will be disseminated to a wider audience through national and international conference presentations.TECHNICAL DETAILSBuilding on a synergy of experiments and atomistic simulations, the groups at RPI and UC Davis will target a scientific understanding of the phase stability of dispersed oxide nanoparticles under high temperature and intense radiation conditions. Y-Ti-O nanoparticles (e.g., Y2Ti2O7 and Y2TiO5) will be synthesized and exposed to different irradiation conditions using intense ion beams and to different temperatures, and the morphology and microstructure will be characterized thoroughly by transmission electron microscopy (TEM) techniques. Calorimetric measurements will investigate the thermodynamic stability of Y-Ti-O nanoparticles as a function of size, irradiation, and temperature. Atomistic computer simulations, including first principles calculations, classical molecular dynamics and kinetic Monte Carlo simulations, will probe synergistic effects of radiation and temperature on the structural evolution of oxide nanoparticles and their defect behavior. This fundamental understanding will reveal the underlying physics and chemistry that govern phase stability and defect behavior of Y-Ti-O nanoparticles and establish the basis for developing predictive models of how nanostructured materials behave under extreme conditions of intense radiation and high temperature. Based on such fundamental understanding, new science will evolve to design strategy in materials processing for strengthening of alloys by oxide nanoparticles.
非技术描述:高温和辐射条件下材料的存活对于它们在极端条件下的核能,空间和其他应用至关重要。通过小(纳米级)氧化物颗粒的分散体可以增强金属合金。氧化钛纳米颗粒大大增强了这种氧化物 - 散异的增强(ODS)合金的热机械和抗辐射性能。在极端环境下了解这些纳米颗粒的特殊稳定性,以便开发具有增强性能的先进结构材料,这在科学上具有挑战性,但在技术上是必要的。通过实验努力和多尺度计算机模拟的协同作用,RPI和UC Davis的研究人员将提高对此类纳米颗粒的转化和结构演化的理解和控制。该研究计划将培训研究生和本科生在辐射效应的关键领域和高级结构材料的发展。通过RPI和UC Davis的各种计划,将尽力使代表性不足的学生,尤其是女工程师参与科学和工程。基本的理解将有助于发展辐射效应和核反应堆材料的双层过程?在RPI。该项目的发现将通过国家和国际会议演讲将其传播给更广泛的受众。技术细节建立了实验和原子模拟的协同作用,RPI和UC Davis的小组将针对对高温和强度辐射条件下分散氧化物纳米粒子的相位稳定性的科学理解。 Y-Ti-O纳米颗粒(例如,Y2TI2O7和Y2TIO5)将合成并使用强烈的离子束和不同的温度暴露于不同的辐射条件,并且将通过透射电子(TEM)技术彻底表征形态和微观结构。量热测量将研究Y-Ti-O纳米颗粒的热力学稳定性,这是大小,照射和温度的函数。原子计算机模拟,包括第一原理计算,经典分子动力学和动力学蒙特卡洛模拟,将探测辐射和温度对氧化物纳米颗粒及其缺陷行为的结构演化的协同作用。这种基本的理解将揭示Y-TI-O纳米颗粒的相稳定性和缺陷行为的基本物理和化学,并为开发纳米结构材料如何在极端辐射和高温条件下表现的预测模型建立了基础。基于这种基本的理解,新科学将发展为设计材料处理策略,以加强氧化物纳米颗粒的合金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Navrotsky其他文献
Thermodynamic stability of selected ASb2O6 and A2Sb2O7 phases (A = Ca, Ba, Cd, Sr, Zn)
所选 ASb2O6 和 A2Sb2O7 相的热力学稳定性(A = Ca、Ba、Cd、Sr、Zn)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.5
- 作者:
J. Majzlan;Xiaocen Jia;K. Lilova;T. Subramani;Alexandra Navrotsky;E. Dachs;A. Benisek - 通讯作者:
A. Benisek
Co<sub>3</sub>O<sub>4</sub>–Co<sub>2</sub>ZnO<sub>4</sub> spinels: The case for a solid solution
- DOI:
10.1016/j.jssc.2012.02.022 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Nicola H. Perry;Thomas O. Mason;Chengcheng Ma;Alexandra Navrotsky;Yezhou Shi;Joanna S. Bettinger;Michael F. Toney;Tula R. Paudel;Stephan Lany;Alex Zunger - 通讯作者:
Alex Zunger
Chemical and environmental stability of monazite-cheralite solid solutions Ln<sub>1-2<em>x</em></sub>Ca<sub><em>x</em></sub>Th<sub><em>x</em></sub>PO<sub>4</sub> (Ln = Pr, Nd; <em>x</em> = 0–0.15): A thermodynamic study
- DOI:
10.1016/j.apgeochem.2022.105504 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Danwen Qin;Anna Shelyug;Stéphanie Szenknect;Adel Mesbah;Nicolas Clavier;Nicolas Dacheux;Alexandra Navrotsky - 通讯作者:
Alexandra Navrotsky
Energetics of porous amorphous low-<em>k</em> SiOCH dielectric films
- DOI:
10.1016/j.jct.2019.105885 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Jiewei Chen;Jason J. Calvin;Sean W. King;Brian F. Woodfield;Alexandra Navrotsky - 通讯作者:
Alexandra Navrotsky
Effects of simulated rare earth recycling wastewaters on biological nitrification 1
模拟稀土回收废水对生物硝化的影响1
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yoshiko Fujita;Joni M. Barnes;A. Eslamimanesh;M. Lencka;A. Anderko;Richard;E. Riman;Alexandra Navrotsky - 通讯作者:
Alexandra Navrotsky
Alexandra Navrotsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Navrotsky', 18)}}的其他基金
Collaborative Research: Rare Earth Materials Under Extreme Conditions
合作研究:极端条件下的稀土材料
- 批准号:
2209026 - 财政年份:2022
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Computational Study of Structure and Thermodynamics of Rare Earth Oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构与热力学的实验与计算研究
- 批准号:
2015852 - 财政年份:2020
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Computational Study of Structure and Thermodynamics of Rare Earth Oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构与热力学的实验与计算研究
- 批准号:
1835848 - 财政年份:2018
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
SusChEM:合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
- 批准号:
1506229 - 财政年份:2015
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Carbides, Nitrides and Related Materials in Earth, Planetary, and Materials Science
地球、行星和材料科学中的碳化物、氮化物和相关材料
- 批准号:
1441423 - 财政年份:2014
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
EAGER: Exploring Routes to Nanocomposites Linking Silicate and Carbon-Based Structures
EAGER:探索连接硅酸盐和碳基结构的纳米复合材料的途径
- 批准号:
1240771 - 财政年份:2012
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Materials World Network: Nanostructure and Thermodynamics of Polymer Derived Ceramics
材料世界网:聚合物陶瓷的纳米结构和热力学
- 批准号:
0907792 - 财政年份:2009
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Energetics of Spatially Confined Solids
空间受限固体的能量学
- 批准号:
0601892 - 财政年份:2006
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Calorimetry Under Extreme Conditions
极端条件下的量热法
- 批准号:
0634137 - 财政年份:2006
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
相似国自然基金
二元金属原子团簇协同催化多硫化锂转化机制研究
- 批准号:22379001
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
- 批准号:22305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
镁原子诱导异核双金属催化剂的制备及其氧还原性能研究
- 批准号:22305054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光吸收与系间窜越调控无重原子光敏剂的合成及其光还原二氧化碳性能研究
- 批准号:22309055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单原子纳米酶促交联水凝胶Cu-N4ClG-COL抗氧化协同免疫调控修复骨关节炎软骨缺损的机制研究
- 批准号:82360426
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
- 批准号:
2137147 - 财政年份:2022
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach
合作研究:美国-爱尔兰 R
- 批准号:
2137157 - 财政年份:2022
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
International collaborative research for the origin of matter mass at GSI
GSI 物质质量起源的国际合作研究
- 批准号:
20KK0070 - 财政年份:2020
- 资助金额:
$ 18.83万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
- 批准号:
1905422 - 财政年份:2019
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
- 批准号:
1905572 - 财政年份:2019
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant