Floer homology in mirror symmetry and in symplectic topology
镜像对称和辛拓扑中的弗洛尔同调
基本信息
- 批准号:0904197
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0904197Principal Investigator: Yong-Geun OhThis project aims at providing a description of Fukaya categoriesof toric manifolds and of Calabi-Yau threefolds, and establishingthe mirror correspondence between the Fano toric A-model and theLandau-Ginzburg B-model based on the general Lagrangian Floertheory established by the PI jointly with Fukaya, Ohta andOno. It also proposes to solve the simpleness problem of the areapreserving homeomorphism group of the two sphere (and the disc)by investigating the extension problem of Calabi homomorphismsand Entov-Polterovich's quasi-morphisms to the Hamiltonianhomeomorphism group. In addition, the PI proposes to apply themachinery of Floer theory to symplectic topology of toricmanifolds and construct new quasi-morphisms on the Hamiltoniandiffeomorphism group and Entov-Polterovich's symplecticquasi-states on toric manifolds. The PI anticipates that theproposed research will not only provide solution to thehomological mirror symmetry of Fano toric A-model andLandau-Ginzburg B-model but also lead to deeper understanding ofopen-closed Floer theory and its applications to dynamicalsystems and symplectic topology.The Hamiltonian formalism played a fundamental role not only forsolving problems in classical mechanics but also for transformingthe classical mechanics into quantum mechanics. It also plays animportant role in deriving many basic physical equations in highenergy physics ranging from quantum field theory to modern stringtheory. The natural space where the Hamiltonian formalism can beexercised is the symplectic manifold (or more generally thePoisson manifold). One of the most distinguished geometricobjects of study in symplectic manifold is the Lagrangiansubmanifold; For example, `the state of a particle with zeromomentum in space' forms a Lagrangian submanifold in `allpossible states of a particle in space' which forms a symplecticmanifold. Understanding the interplay between geometry ofLagrangian submanifolds and dynamics of Hamiltonian flows is thecore theme of symplectic topology. The PI's proposed researchaims at extending the Hamiltonian dynamics to the level ofcontinuous dynamics and solving various problems arising fromHamiltonian dynamics and mirror symmetry. It also aims at easingthe access of graduate students and researchers from otherrelated fields into the study of Floer theory and mirror symmetryby writing a graduate level textbook on Floer homology and itsapplications to symplectic geometry.
Abstractaward:DMS-0904197原理研究者:Yong-Geun OhiN项目旨在提供对福卡亚福音歧管的福卡亚类别的描述,以及Calabi-yau的三倍,并建立了基于Fano toric a-Model和TheLandau-Ginzburg B-Modelly flooder flooder flooder floore floore floore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore lore。福卡亚(Ohta Andono)。它还建议通过调查卡拉比同构和entov-Polterovich的准 - 莫尔晶型术语的扩展问题来解决这两个球体(和盘)的更简单问题。此外,PI提议将浮子理论的含义应用于摩托克曼群岛的象征性拓扑,并在汉密尔顿二象形组和Entov-Polterovich的Symphecticquasi-States上构建新的准杂色。 PI预计,规定的研究不仅将提供解决方案的镜像圆环A模型Andlandau-Ginzburg B模型的知识镜对称性,而且还可以使人们对封闭的浮动理论及其在动力学系统和符号拓扑中的应用更深入地了解,以及其在典型的拓扑中,不仅在类似的机构中涉及基本机制,因此可以构成基本的机制,以构成基础,并涉及基本的机制。量子力学。它还在得出从量子场理论到现代弦理论的高素质物理学中的许多基本物理方程式中扮演着动漫的角色。可以对哈密顿形式主义进行的自然空间是象征性的歧管(或更一般的杂种歧管)。在符号歧管中最杰出的研究的几何观察者之一是Lagrangiansubmanifold。例如,“空间中具有零元的粒子的状态”形成了形成symplecticManifold的“空间中粒子的所有可能状态”中的Lagrangian submanifold。了解Llagrangian submanifolds的几何形状与哈密顿流动的动态之间的相互作用是符号拓扑的主题。 PI提出的研究将哈密顿动力学扩展到连续的动力学水平,并解决了从哈米尔顿动力学和镜像对称性引起的各种问题。 它还旨在将研究生和研究人员从其他相关领域的访问权限放到浮动理论的研究中,并镜像对称词,撰写了一本有关浮子同源性及其应用程序的研究生级教科书。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Geun Oh其他文献
モチビック・コホモロジー,その応用と重要な予想
动机上同调、其应用和重要预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
「『大阪府民の政治・市民参加と選挙に関する社会調査』の概要と基礎的分析」
“‘大阪市民政治、公民参与和选举社会调查’的概要和基本分析”
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;伊藤理史・三谷はるよ - 通讯作者:
伊藤理史・三谷はるよ
Japanese Household Behavior in the Stock Market
日本家庭在股票市场的行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hirohi Ohta;Kaoru Ono;Takashi Komatsubara - 通讯作者:
Takashi Komatsubara
Single-molecule chemistry and optical spectroscopy on insulating films with STM
使用 STM 对绝缘薄膜进行单分子化学和光谱分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;坂倉輝俊,木村宏之,野田幸男,石川喜久,岸本俊二,竹中康之,田中清明,十倉好紀,宮坂茂樹;Shuji Saito;Yousoo Kim - 通讯作者:
Yousoo Kim
Homological descent for motivic homology theories,
动机同源理论的同源下降,
- DOI:
10.4310/hha.2014.v16.n2.a2 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
Yong-Geun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong-Geun Oh', 18)}}的其他基金
Mirror Symmetry in the Midwest 2012
2012 年中西部的镜像对称
- 批准号:
1242683 - 财政年份:2012
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Great Lakes Geometry Conference 2010
2010 年五大湖几何会议
- 批准号:
0966902 - 财政年份:2010
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
0852446 - 财政年份:2009
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Symplectic Topology, Mirror Symmetry and Analysis of Pseudoholomorphic Curves
辛拓扑、镜像对称与赝全纯曲线分析
- 批准号:
0503934 - 财政年份:2005
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Floer Theory, Symplectic Geometry and Mirror Symmetry
弗洛尔理论、辛几何和镜面对称
- 批准号:
0203593 - 财政年份:2002
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Topology and geometry of Lagrangian submanifolds and its applications
拉格朗日子流形的拓扑几何及其应用
- 批准号:
9971446 - 财政年份:1999
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
- 批准号:
9504455 - 财政年份:1995
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Manifolds
数学科学:辛拓扑
- 批准号:
9215011 - 财政年份:1992
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9296078 - 财政年份:1991
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9012367 - 财政年份:1990
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
肿瘤球混合堆砌-诱导分化构建同源性血管化结肠癌类器官用于血管发生干预靶点筛选
- 批准号:82373453
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:82103045
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF2对肥厚心肌钙致钙释放的影响及其机制研究
- 批准号:81900249
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Moduli space, Homotopical algebra, Field theory
模空间、同伦代数、场论
- 批准号:
13852001 - 财政年份:2001
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Floer homology, string theory and contact geometry
弗洛尔同调、弦理论和接触几何
- 批准号:
12640066 - 财政年份:2000
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli space and infinite dimensional geometry
模空间和无限维几何
- 批准号:
09304008 - 财政年份:1997
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A).