Moduli space and infinite dimensional geometry

模空间和无限维几何

基本信息

  • 批准号:
    09304008
  • 负责人:
  • 金额:
    $ 17.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 2000
  • 项目状态:
    已结题

项目摘要

Fukaya, Ono, Ohta together with Oh constructed an obstruction theory for Lagrangian intersection Floer homology to be well defined. Based on it, an (algebraic) deformation theory of Lagrangian submanifold and quantum deformation of Lagrangian submanifold is constructed. We finished a preliminary version of the book (of 350 pages) describing them in Dec. 2000. After than we made a progress on homotopical algebra part and clarify the relation to classical homotopy type etc. So we are now adding more material (approximately 100 pages).Our Lagrangian intersection Floer theory is an open string version of the theory of Gromov-Witten invariant which are completed by several mathematicians including Fukaya-Ono.In our case of open string version, we need more careful treatment on homological algebra part for example so that we need to develop homotopical algebra itself for this purpose.The orientation of the moduli space is also a delicate question since the moduli space of pseudoholomorphic d … More isks do not carry an almost complex structure. Moreover we need additional argument to work out analytic detail mainly because we need to work in the chain level.While working out the detail of the Lagrangian intersection Floer theory, we have a better understanding of the relation between quantum field theory and various notions developed in the late half of the 20 th century. For example we observed a close relation between Feynman diagram, homotopical algebra and of local deformation theory.Nakajima pursuit his study to construct interesting algebraic structures based on moduli spaces. In his study, various example which are supposed to play the central role in the theory is studied in detail explicitly and various interesting new algebraic structures are constructed.Furuta and his coauthors further studied a relation between moduli space in 4 dimensional gauge theory and stable homotopy theory. This point of view is already appeared in Furuta's proof of 10/8 theorem of intersection form of 4 manifolds. By recent development, several interesting applications such as construction of new invariant of homology 3 spheres and study of embedding of surface in the connected sum of two K3 surfaces. are obtained.f embedding of surface in the Less
Fukaya、Ono、Ohta 和 Oh 一起构建了拉格朗日交集弗洛尔同调的阻碍理论,在此基础上,构建了拉格朗日子流形的(代数)变形理论和拉格朗日子流形的量子变形理论。 2000 年 12 月描述它们的书(共 350 页)。之后我们在同伦代数部分取得了进展,并澄清了因此,我们现在正在添加更多材料(大约 100 页)。我们的拉格朗日交集 Floer 理论是 Gromov-Witten 不变量理论的开弦版本,由包括 Fukaya-Ono 在内的几位数学家完成。在我们的开弦版本的情况下,我们需要对同调代数部分进行更仔细的处理,因此我们需要为此目的开发同伦代数本身。模空间也是一个微妙的问题,因为伪全纯的模空间不具有几乎复杂的结构,而且我们需要额外的参数来计算出分析细节,主要是因为我们需要在链级别上工作。通过拉格朗日交弗洛尔理论的细节,我们对量子场论和20世纪下半叶发展起来的各种概念之间的关系有了更好的理解,例如我们观察到了费曼图、同伦图之间的密切关系。中岛致力于基于模空间构造有趣的代数结构。在他的研究中,详细研究了各种被认为在理论中发挥核心作用的例子,并提出了各种有趣的新代数结构。 Furuta 和他的合著者进一步研究了 4 维规范理论中的模空间与稳定同伦理论之间的关系,这一观点已经出现在 Furuta 的 10/8 证明中。通过最近的发展,得到了一些有趣的应用,例如同调3球的新不变量的构造以及两个K3曲面的连通和中的曲面嵌入的研究。f 曲面在Less中的嵌入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kenji FUKAYA: "Mirror symmetry of Abelian variety and multi theta functions"J.Alg. Geom.. (submitted).
Kenji FUKAYA:“阿贝尔簇的镜像对称性和多θ函数”J.Alg。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kenji FUKAYA: "Floer homology over integer of general symplectic manifolds - summary -"Proc.Taniguchi symposium Nara. 1-15 (2000)
Kenji FUKAYA:“一般辛流形整数上的弗洛尔同调 - 摘要 -”Proc.Taniguchi 研讨会奈良。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Furuta Mikio: "Stable-homotopy Seiberg-Witten invariants for rational cohomology K3 #K3"Journal of Mathematical Sciences, The University of Tokyo. (in press).
Furuta Mikio:“有理上同调 K3 的稳定同伦 Seiberg-Witten 不变量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Fukaya: "Amold conjecture and Gromov Written Invariants" Topology. 1-150
K.Fukaya:“阿莫尔德猜想和格罗莫夫写不变量”拓扑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Fukaya: "Floer homology of Lagrangion Sobation and noncommutative mirror Symmetry" 1-35
K.Fukaya:“拉格朗日 Sobation 的弗洛尔同调和非交换镜像对称” 1-35
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKAYA Kenji其他文献

FUKAYA Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKAYA Kenji', 18)}}的其他基金

New development of geometry based on topological field theory
基于拓扑场论的几何新发展
  • 批准号:
    18104001
  • 财政年份:
    2006
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Moduli space, Homotopical algebra, Field theory
模空间、同伦代数、场论
  • 批准号:
    13852001
  • 财政年份:
    2001
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Categorical Algebra and Topological Field Theory
分类代数和拓扑场论
  • 批准号:
    07640111
  • 财政年份:
    1995
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interaction between Geometry and various mathematics
几何与各种数学之间的相互作用
  • 批准号:
    07304010
  • 财政年份:
    1995
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
  • 批准号:
    2303823
  • 财政年份:
    2023
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
  • 批准号:
    2417229
  • 财政年份:
    2023
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
CAREER: Bordered Floer homology and applications
职业:Bordered Floer 同源性和应用
  • 批准号:
    2145090
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
  • 批准号:
    2203237
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了