GOALI: MEMS-Based Preconcentrators with Nano-Structured Adsorbents for Micro Gas Chromatography

GOALI:用于微型气相色谱法的基于 MEMS 的具有纳米结构吸附剂的预浓缩器

基本信息

项目摘要

0854242AgahSince the 1950s, gas chromatography (GC) has been a common approach for analysis of volatile mixtures. The use of microelectromechanical systems (MEMS) technology for GC development (ìGC) is a promising approach for developing micro-instruments having lower cost, smaller size, lower power consumption, faster analysis, and greatly increased portability for in-field use compared to their conventional counterparts. These instruments have applications in homeland security, industrial process control, bio-monitoring, and in improving environment quality. Due to the low concentration of volatile and semi-volatile organic compounds (VOC) in ìGCs, a preconcentration step prior to real-time chemical sensor measurement is needed. The ideal preconcentrator would automatically sample the ambient gas and improve the measurement sensitivity by 10-1000 fold while having low power consumption. We will address this challenge by combining and bridging the gap between top-down miniaturized processing (MEMs) and bottom-up self-assembly approaches (nanotechnology). The objective of this work is to employ MEMS technology to develop VOC preconcentrator chips with integrated thermal desorption capability and high surface-to-volume-ratio and to utilize nanotechnology to coat them with nano-structured adsorbents. Four specific goals are proposed: 1) fabricate low-mass (low-power) preconcentrators with on-chip heaters and temperature sensors using high-aspect-ratio silicon etching techniques and a silicon-on-glass wafer process, 2) deposit ionic self-assembled multilayers (ISAM) or alkane functionalized gold nanoparticles on all surfaces of the MEMS-based preconcentrators with nanometer resolutions, 3) coat MEMS preconcentrators with conventional adsorbents such as OV-1 and Tenax and evaluate their performance against those coated with nano-structured materials in terms of desorption width, breakthrough volume, and temperature profile as well as develop new models to predict the behavior of such preconcentrators, and 4) characterize the performance of ìPCs and their corresponding adsorbents for monitoring bioanalytes present in breath and compare the performance of the microchips with conventional industry-standard preconcentrators through collaboration with Convergent Engineering Inc. (CE). We expect to demonstrate the concentration and desorption of n-alkanes (C5-C16) and polyaromatic hydrocarbons as well as breath analytes that vary in ring-size by achieving a concentration factor of 200, desorption widths 0.2s, and power consumptions 1W at 50°C/sec temperature ramps. The ability to self-assemble both polar and non-polar adsorbent materials will enable us to have selective concentration of analytes in a wide range of applications, namely environmental monitoring, homeland security, and biomedicine. The outcome of this project will set an outstanding example of how MEMS and Nanotechnology can become highly complementary methodologies for developing low-cost, low-power, high-performance devices that impact industries across the globe, considering that the worldwide market for GC instruments is estimated to be around $1 billion annually. This research will also advance discovery while promoting teaching and learning at the high school, undergraduate, and graduate levels. This includes: 1) development of gas chromatographic demonstrations using the MEMS-based preconcentrators with nano-structured adsorbents for Virginia Tech?s Society of Physics Students outreach programs to rural, southwestern Virginia high school students, 2) research opportunities for undergraduates at Virginia Tech (VT) and the College of William and Mary (W&M), 3) recruiting of graduate students from under-represented groups into a highly interdisciplinary research program, and 4) incorporation of the project results in the courses taught by the PIs in different departments/institutions, namely VT?s MEMS: from fabrication to application and Nanotechnology, and W&M?s Instrumental Analysis and Advanced Analytical Chemistry and 4) annual joint seminars by VT, W&M, and CE on microsystems applications in biomedicine. Additionally, the outcome of this research will be widely disseminated to the engineering and scientific communities in peer-reviewed journals and in presentation at multidisciplinary conferences, to CE and other industries that use or develop gas chromatography and VOC preconcentrators (microtraps), and in web pages that will serve as resources for off-campus faculty who are teaching undergraduate and graduate analytical chemistry courses that deal with separation science
0854242Agah 自 20 世纪 50 年代以来,气相色谱 (GC) 一直是分析挥发性混合物的常用方法。使用微机电系统 (MEMS) 技术进行 GC 开发 (ìGC) 是开发成本更低、尺寸更小的微型仪器的一种有前景的方法。与传统同类仪器相比,这些仪器具有更低的功耗、更快的分析速度以及大大提高的现场使用便携性。由于 ìGC 中挥发性和半挥发性有机化合物 (VOC) 浓度较低,因此需要在实时化学传感器测量之前进行预浓缩步骤。理想的预浓缩器会自动进行。对环境气体进行采样,并将测量灵敏度提高 10-1000 倍,同时保持低功耗。我们将通过结合和弥合自上而下的小型化处理 (MEM) 和技术之间的差距来应对这一挑战。自下而上的自组装方法(纳米技术)是利用 MEMS 技术开发具有集成热解吸能力和高表面积体积比的 VOC 预浓缩器芯片,并利用纳米技术对其进行纳米涂层涂覆。提出了四个具体目标:1)使用高深宽比硅蚀刻技术和技术制造带有片上加热器和温度传感器的低质量(低功耗)预浓缩器。玻璃硅晶圆工艺,2) 在基于 MEMS 的预浓缩器的所有表面上以纳米分辨率沉积离子自组装多层 (ISAM) 或烷烃功能化金纳米粒子,3) 用传统吸附剂(如 OV-1)涂覆 MEMS 预浓缩器和 Tenax 并评估它们与涂有纳米结构材料的材料在解吸宽度、突破体积和温度分布方面的性能,并开发新模型预测此类预浓缩器的行为,4) 表征用于监测呼吸中存在的生物分析物的 ìPC 及其相应吸附剂的性能,并通过与传统工程公司 (CE) 的合作将微芯片与行业标准预浓缩器的性能进行比较。通过实现环尺寸变化来演示正构烷烃 (C5-C16) 和多环芳烃以及呼吸分析物的浓缩和解吸浓缩因子为 200,解吸宽度为 0.2 秒,在 50°C/秒的温度梯度下功耗为 1W。自组装极性和非极性吸附材料的能力将使我们能够在较宽的范围内选择性地浓缩分析物。该项目的成果将为 MEMS 和纳米技术如何成为开发低成本、考虑到气相色谱仪器的全球市场每年约为 10 亿美元,这项研究还将推动发现,同时促进高中、本科生和大学的教学。这包括:1) 使用基于 MEMS 的预浓缩器和纳米结构吸附剂为弗吉尼亚理工大学物理系学生的推广项目开发气相色谱演示,2) 为弗吉尼亚州西南部的农村高中生提供研究机会。弗吉尼亚理工大学 (VT) 和威廉玛丽学院 (W&M) 的本科生,3) 从代表性不足的群体中招募研究生参与高度跨学科的研究项目,以及 4) 将项目成果纳入由弗吉尼亚理工大学 (VT) 和威廉玛丽学院 (W&M) 教授的课程中不同部门/机构的PI,即VT的MEMS:从制造到应用和纳米技术,以及W&M的仪器分析和高级分析化学以及4)VT的年度联合研讨会,此外,这项研究成果将在同行评审期刊上以及在多学科会议上的演示中向工程和科学界、CE 和其他使用或开发气相色谱法的行业广泛传播。和 VOC 预浓缩器(微捕集器),以及网页,这些网页将作为校外教师的资源,这些教师正在教授处理分离科学的本科生和研究生分析化学课程

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masoud Agah其他文献

The impact of sphingosine kinase inhibitor-loaded nanoparticles on bioelectrical and biomechanical properties of cancer cells
  • DOI:
    10.1039/c5lc01201e
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Hesam Babahosseini;Vaishnavi Srinivasaraghavan;Zongmin Zhao;Frank Gillam;Elizabeth Childress;Jeannine S. Strobl;Webster L. Santos;Chenming Zhang;Masoud Agah
  • 通讯作者:
    Masoud Agah
Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification
  • DOI:
    10.1039/c6ay03342c
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hesam Babahosseini;Jeannine S. Strobl;Masoud Agah
  • 通讯作者:
    Masoud Agah
A purge and trap integrated microGC platform for chemical identification in aqueous samples
  • DOI:
    10.1039/c4an00254g
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Muhammad Akbar;Shree Narayanan;Michael Restaino;Masoud Agah
  • 通讯作者:
    Masoud Agah
Nonparametric Bayesian functional clustering with applications to racial disparities in breast cancer
非参数贝叶斯函数聚类及其在乳腺癌种族差异中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenyu Gao;Inyoung Kim;Wonil Nam;Xiang Ren;Wei Zhou;Masoud Agah
  • 通讯作者:
    Masoud Agah
Sub-cellular force microscopy in single normal and cancer cells.
单个正常细胞和癌细胞的亚细胞力显微镜。

Masoud Agah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Masoud Agah', 18)}}的其他基金

U.S.-Ireland R&D Partnership: Wearable Dynamic Microsystem Sampler for Collecting Microbial Volatiles (SenSorp)
美国-爱尔兰 R
  • 批准号:
    2139716
  • 财政年份:
    2022
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
A Fast-Response Odor Detector for Food Analysis
用于食品分析的快速响应气味检测器
  • 批准号:
    1711699
  • 财政年份:
    2017
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Single-Cell Iterative Mechano-Electrical Properties Analyzer
单细胞迭代机电特性分析仪
  • 批准号:
    1403304
  • 财政年份:
    2014
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Three Dimensional, Passivated-Electrode, Insulator-Based Dielectrophoresis (3D-PiDEP)
基于钝化电极、绝缘体的三维介电电泳 (3D-PiDEP)
  • 批准号:
    1310090
  • 财政年份:
    2013
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
GOALI: Semi-Packed Gas Separation Columns with Monolayer-Protected Gold Phases
GOALI:具有单层保护金相的半填充气体分离柱
  • 批准号:
    1002279
  • 财政年份:
    2010
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
IDR: A Cancer Sensor-on-a-Chip Using Integrated Biomechanical and Bioimpedance Cell Signatures
IDR:使用集成生物力学和生物阻抗细胞特征的癌症芯片传感器
  • 批准号:
    0925945
  • 财政年份:
    2009
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
CAREER: GC Matrix, a Microsystem Approach for Complex Gas Analysis
职业:GC Matrix,复杂气体分析的微系统方法
  • 批准号:
    0747600
  • 财政年份:
    2008
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
MEMS-Based Multicapillary Columns with Nano-Structured Stationary Phases for High-Speed, High-Performance Gas Chromatography
基于 MEMS 的多毛细管柱,具有纳米结构固定相,适用于高速、高性能气相色谱分析
  • 批准号:
    0601456
  • 财政年份:
    2006
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
SGER: MEMS-Based Preconcentrators with Nano-Structured Adsorbents for Micro Gas Chromatography
SGER:用于微型气相色谱的基于 MEMS 的具有纳米结构吸附剂的预浓缩器
  • 批准号:
    0610213
  • 财政年份:
    2006
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant

相似国自然基金

基于石墨烯异质结的宽量程柔性MEMS耐高温压力传感器关键技术研究
  • 批准号:
    52305614
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多物理量信息融合的MEMS相对重力仪误差机理及补偿方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于MEMS井下Baseline-RFMDR紧耦合定位理论与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于PT对称的LC可调谐MEMS非互易系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于MEMS原位表征的纳米高熵合金生长调控及其气体传感增敏机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Research Grant
SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
SBIR 第一阶段:基于微机电系统 (MEMS) 的近零功耗红外传感器,用于接近检测
  • 批准号:
    2304549
  • 财政年份:
    2024
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Research Grant
Olfactory Sensors and MEMS Based Ultrasonic Transducers
基于 MEMS 的嗅觉传感器和超声波换能器
  • 批准号:
    RGPIN-2018-05002
  • 财政年份:
    2022
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Discovery Grants Program - Individual
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了