Conference: Lie Algebraic Systems with Origins in Physics
会议:起源于物理学的李代数系统
基本信息
- 批准号:0852633
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Kleshchev, Alexander Proposal Number: DMS - 0757852 Institution: University of Oregon Eugene Title: Conference `Lie Algebraic Systems with Origins in Physics'In January-June 2009, a half-year program "Algebraic Lie Theory" will take place at the Isaac Newton Institute in Cambridge, England. One of the major events during the program will be the workshop "Lie Algebraic Systems with Origins in Physics" planned for 23-27 March, 2009. The workshop will bring together mathematicians and mathematical physicists working in such (overlapping) areas as W-algebras, Yangians, vertex algebras, positive characteristic Lie theory, conformal algebras, chiral algebras, quantum groups, Hecke algebras, Cherednik algebras, infinite dimensional Lie algebras, as well as related representation theory, geometry, combinatorics, and applications. The meeting will provide rare and very important opportunities, especially for young researchers (including graduate students). It will bring together people working in different areas of Lie theory, mathematical physics, and representation theory. Instructional workshops are planned as part of the larger program at the Isaac Newton Institute. A volume of proceedings of the workshop is planned. This grant provides support for participation of U.S. mathematicians in this workshop. This support might be used by many participants in an especially effective way: once there, people might be able to stay at the Isaac Newton Institute for a longer period of time using additional funds of their own or apply for per diem from the Institute. At least half of the funds will be used to support women, minority, and young scientists (including graduate students).
摘要Principal研究者:Kleshchev,Alexander提案编号:DMS-0757852机构:俄勒冈大学Eugene University title:会议`lie代数系统,起源于物理学,2009年1月至6月,一个半年计划“代数”谎言理论”将在Isaac Newton Instute in Cambridge in Cambridge in Cambridge in Cambridge in Cambridge in Cambridge in Cambridge in Cambridge inland cambridge of cambridge of。 One of the major events during the program will be the workshop "Lie Algebraic Systems with Origins in Physics" planned for 23-27 March, 2009. The workshop will bring together mathematicians and mathematical physicists working in such (overlapping) areas as W-algebras, Yangians, vertex algebras, positive characteristic Lie theory, conformal algebras, chiral algebras, quantum groups, Hecke代数,Cherednik代数,无限尺寸为代数,以及相关的表示理论,几何形状,组合和应用。这次会议将为罕见且非常重要的机会,特别是对于年轻的研究人员(包括研究生)。它将聚集在谎言理论,数学物理学和代表理论的不同领域中工作的人们。艾萨克·牛顿学院(Isaac Newton Institute)的较大计划的一部分计划将教学讲习班。计划了一系列研讨会。该赠款为美国数学家参加该研讨会的参与提供了支持。许多参与者可能会以特别有效的方式使用这种支持:一旦到达那里,人们可能能够使用自己的额外资金在Isaac Newton Institute呆了更长的时间或从研究所申请DIEM。至少一半的资金将用于支持妇女,少数群体和年轻科学家(包括研究生)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kleshchev其他文献
Irina Dmitrievna Suprunenko (04.02.1954–10.08.2022)
伊琳娜·德米特里耶夫娜·苏普鲁年科 (04.02.1954–10.08.2022)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.6
- 作者:
Alexander Baranov;R. Guralnick;Alexander Kleshchev;Boris Plotkin;Eugene Plotkin;Alexander Premet;Gerhard Rörhle;Gary Seitz;Donna Testerman;P. Tiep;Nikolai Vavilov;Alexandre Zalesski;Efim Zelmanov - 通讯作者:
Efim Zelmanov
Alexander Kleshchev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kleshchev', 18)}}的其他基金
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
- 批准号:
2101791 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Hidden Gradings in Representation Theory
表示论中的隐藏等级
- 批准号:
1161094 - 财政年份:2012
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant
Groups and Representations Conference; March 25-27, 2004; Eugene, OR
团体和代表会议;
- 批准号:
0244651 - 财政年份:2004
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Representations of Finite Groups and Algebraic Lie Theory
有限群的表示和代数李理论
- 批准号:
0139019 - 财政年份:2002
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant
Quantum Littlewood-Richarson Coefficients and Harish-Chandra Induction for Finite General Linear Groups
有限一般线性群的量子Littlewood-Richarson系数和Harish-Chandra归纳
- 批准号:
9900134 - 财政年份:1999
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Mathematical Sciences: Branching Rules for Symmetric Groups and Hecke Algebras via Algebraic and Quantum Groups
数学科学:通过代数和量子群的对称群和赫克代数的分支规则
- 批准号:
9600124 - 财政年份:1996
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
相似国自然基金
C*-代数上的投影和2-局部导子
- 批准号:12026252
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
C*-代数上的投影和2-局部导子
- 批准号:12026250
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
直接线性化与离散可积系统的Lie代数分类
- 批准号:11901198
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
微分分次几何中的同调和Batalin-Vilkovisky量子化
- 批准号:11901221
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
半单Lie代数相关的若干经典和量子可积系统的代数和几何性质
- 批准号:11871396
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
相似海外基金
擬シンプレクティック-Nijenhuis構造と可積分系の関連について
论赝辛-Nijenhuis结构与可积系统的关系
- 批准号:
23K12977 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
- 批准号:
22KJ0912 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
- 批准号:
22K03299 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on local functional equations form representation theory and geometry
局部函数方程形式表示论与几何的研究
- 批准号:
21K03169 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)