CAREER: Charging and Coagulation of Dust Grains I Astrophysical and Laboratory Environments

职业:尘埃颗粒的充电和凝结 I 天体物理和实验室环境

基本信息

  • 批准号:
    0847127
  • 负责人:
  • 金额:
    $ 43.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The field of complex plasmas provides a rich field for inquiry into the areas of space and laboratory physics. The ability of dust grains immersed in a plasma environment to organize themselves into complex structures provides insights into the physics of systems as diverse as the formation of planets in protoplanetary disks to the structure and phase transitions of crystalline solids. Recent astronomical evidence has shown that our planetary system is not unique in the galaxy. Rather, it seems more the rule than the exception for a star to be accompanied by orbiting planets. The planets must necessarily form from the disk of gas and dust left over from the formation of the parent star. Thus the formation of planets initially depends on how micron-sized grains, immersed in a plasma and radiative environment, are able to collide, stick and organize themselves into larger, more robust structures which may then agglomerate under gravitational interactions. The objective of this research is to develop a detailed model for the coagulation of charged fractal aggregates in a protoplanetary disk. This will be achieved by a combination of numerical modeling and experimental research directed at furthering the understanding of the microphysics involved in the charging and coagulation of fractal aggregates. The charging and growth of fractal aggregates are necessarily linked and must be included self-consistently to correctly model the interaction of charged aggregates. The charge distribution on aggregates influences their orientation as they collide and stick, which in turn determines how open or compact the fractal structure is, a major influence on the coagulation rate. Numerical models will be used to determine the charge and charge arrangement on irregular dust aggregates. The results of the charging models can then be incorporated into existing coagulation models. New algorithms will be added to the coagulation models to allow for the dipole-dipole interactions between charged grains, the coupling of the fractal grains to the gas environment, and include various collision outcomes (sticking without restructuring, crushing, disruption, etc.) to determine limits on fractal grain growth. Laboratory experiments run concurrently with the numerical simulations will provide a check on theoretical models and provide additional data to improve the models.The results of this project will provide new and fundamentally original information about the self-assembly and growth of charged dust grains. This project will have implications not only for understanding dust growth as an initial step towards planet formation, but will also contribute to the understanding of the self-ordering and growth of dust in controlled laboratory plasma environments, such as those found in plasma semi-conductor manufacturing and magnetically confined plasma fusion experiments. Grain aggregation is also an important process in understanding atmospheric processes both here on earth and on other bodies in the solar system. The coagulation of charged grains may also prove relevant to understanding processes such as catalysis and pollution control. Graduate, undergraduate, technical, and high school students working on this project will receive training and experience that will prepare them for careers in academia, industry, or government laboratories. They will learn not only physical principles and experimental protocols, but will also develop critical skills such as computation and modeling, practical experience with vacuum systems, instrumentation and diagnostics, and technical writing and presentation skills.
复杂等离子体领域为空间和实验室物理领域的研究提供了丰富的领域。 浸没在等离子体环境中的尘埃颗粒能够将自身组织成复杂的结构,这为我们深入了解从原行星盘中行星的形成到晶体固体的结构和相变等各种系统的物理学提供了见解。最近的天文学证据表明,我们的行星系统在银河系中并不是独一无二的。 相反,恒星与绕轨道运行的行星相伴似乎更像是一种规则,而不是例外。 行星必定是由母恒星形成时留下的气体和尘埃盘形成的。 因此,行星的形成最初取决于浸没在等离子体和辐射环境中的微米级颗粒如何碰撞、粘附和组织成更大、更坚固的结构,然后这些结构可能在重力相互作用下聚集。 这项研究的目的是开发一个用于原行星盘中带电分形聚集体凝固的详细模型。 这将通过数值模拟和实验研究相结合来实现,旨在进一步了解分形聚集体充电和凝结所涉及的微观物理学。分形聚集体的充电和增长必然相互关联,并且必须自洽地包含在内,以正确模拟带电聚集体的相互作用。 聚集体上的电荷分布会影响它们碰撞和粘附时的方向,这反过来又决定了分形结构的开放或紧凑程度,这是对凝结速率的主要影响。 数值模型将用于确定不规则灰尘聚集体上的电荷和电荷排列。 然后可以将充电模型的结果合并到现有的凝血模型中。 新的算法将被添加到凝结模型中,以允许带电颗粒之间的偶极-偶极相互作用、分形颗粒与气体环境的耦合,并包括各种碰撞结果(粘着而不重组、压碎、破坏等)确定分形晶粒生长的限制。 与数值模拟同时进行的实验室实验将对理论模型进行检查,并提供额外的数据来改进模型。该项目的结果将提供有关带电尘埃颗粒的自组装和生长的新的、根本性的原始信息。该项目不仅对理解尘埃生长作为行星形成的第一步具有重要意义,而且还将有助于理解受控实验室等离子体环境中尘埃的自排序和生长,例如在等离子体半导体中发现的环境制造和磁约束等离子体聚变实验。 颗粒聚集也是理解地球和太阳系其他天体大气过程的一个重要过程。带电颗粒的凝结也可能与理解催化和污染控制等过程相关。从事该项目的研究生、本科生、技术生和高中生将接受培训和经验,为他们在学术界、工业界或政府实验室的职业生涯做好准备。他们不仅将学习物理原理和实验方案,还将培养关键技能,如计算和建模、真空系统、仪器和诊断的实践经验,以及技术写作和演示技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorin Matthews其他文献

Lorin Matthews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorin Matthews', 18)}}的其他基金

Collaborative Research: Study of Anisotropic Dust Interactions in the PK-4 Experiment
合作研究:PK-4 实验中各向异性尘埃相互作用的研究
  • 批准号:
    2308743
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
Onset of Turbulence in Dusty Plasma Liquids
尘埃等离子体液体中湍流的开始
  • 批准号:
    1903450
  • 财政年份:
    2019
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
Dynamics of Strongly Coupled Complex Plasma Systems with Directed Ion Flow
具有定向离子流的强耦合复杂等离子体系统的动力学
  • 批准号:
    1707215
  • 财政年份:
    2017
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fundamental Charging Processes of Dust in Complex Plasmas
合作研究:复杂等离子体中灰尘的基本充电过程
  • 批准号:
    1414523
  • 财政年份:
    2014
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于信息呈现与收费模式的平台治理研究
  • 批准号:
    72271217
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于活动方法的自动驾驶通勤建模与拥堵收费问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑用户异质性的宏微观一体化停车网络动态建模及差别化停车收费优化方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于半约束驾驶行为的混合型收费站分流区交通安全评估与主动管控研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市中心区大型停车场分配优化与收费定价方法
  • 批准号:
    72161012
  • 批准年份:
    2021
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
  • 批准号:
    10099143
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Collaborative R&D
Differential Evolution Framework for Intelligent Charging Scheduling
智能充电调度的差分进化框架
  • 批准号:
    DP240102317
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Discovery Projects
Project Zephattan: Demonstrating three wind-generator technologies to power e-mobility charging in West Africa and the Pacific
Zephattan 项目:展示三种风力发电机技术,为西非和太平洋地区的电动汽车充电提供动力
  • 批准号:
    10107747
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Demonstrator
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了