ITR - (ASE) - (sim+dmc): Parallel Data Mining for Nanoscale Kinetic Monte Carlo Simulation Models

ITR - (ASE) - (sim dmc):纳米级动力学蒙特卡罗模拟模型的并行数据挖掘

基本信息

项目摘要

Intellectual Merit:Advances in computational science and technology have made the theoreticalmodeling of materials processes and properties viable, desirable, and a strong supplement to experimental work. Since the understanding and manipulation of the macroscopic properties of materials relies on information obtained at the microscopic level, one of the challenges in ASE is in developing the framework for a seamless, multiscale study of materials properties and related phenomena. The kinetic Monte Carlo method is one such technique which is suitable for simulations over a large range of length and time scales and which has the potential to connect atomistic details with macroscopic observations.The standard method is, however, handicapped because of the requirement of prior knowledge of theunderlying atomic mechanisms and their energetics. Typically only a few processes involving singleatom motion are provided as input to kinetic Monte Carlo simulations, thereby neglecting the role ofcollective atomic motion, vacancy creation, and complex atomic processes, as well as biasing the timeevolution of the system. In the proposed research in ASE with technical focus in sim and dmc, we planto overcome these limitations through the inclusion of unique and innovative pattern recognition schemesalong with automated procedures for the calculation of system energetics on the fly. This procedure willallow the development of an extensive database of possible atomic events. The database so collected willserve as input for further analysis and processing using machine learning and data mining for thedevelopment of efficient, robust, and accurate mapping functions which will be extensively tested throughsimulations of a variety of phenomena in epitaxial growth and validated through comparison with relevantexperimental data. The resulting mapping functions will serve to vastly increase the accuracy and speedof simulations.Broader Impact:Our goal of creating accurate and efficient computational algorithms for the simulationof phenomena such as thin-film growth will be a significant achievement in the technical focus areas ofsim and dmc, because of the innovative methodologies resulting from cross-disciplinary approaches. Thesuccessful implementation of the algorithms for computer design of materials, however, will be abreakthrough in ASE, as it will enable the development of technologically important materials with muchreduced cost and much greater control.The work will also provide us opportunities for educational and outreach activities with broad national, international and societal impact. Apart from the education and training of our graduate and undergraduate students in ITR, we will propose to work with the K-12 community in this endeavor. We intend to do so through the integration of research and education. Our team will collectively incorporate products of the research into courses on computational methods in physics, on data mining, on machine learning, and on adaptive parallelization techniques. A module for instructional and outreach purposes will also be developed. Two high school teachers will be recruited to spend summer sessions at KSU. Regular outreach activities with K-12 teachers and students will help broaden the pool of individuals in IT and nanoscale science literate individuals. Existing international collaborations of the PI with Prof. Alatalo, Finland, Dr. Trushin, Russia, and Dr. Durukanoglu, Turkey will help extend the outcomes of the proposed work internationally.
智力优点:计算科学和技术的进步使得材料过程和性能的理论建模变得可行、理想,并且是对实验工作的有力补充。由于对材料宏观特性的理解和操纵依赖于在微观层面获得的信息,因此 ASE 的挑战之一是开发对材料特性和相关现象进行无缝、多尺度研究的框架。动力学蒙特卡罗方法就是这样一种技术,它适用于大范围的长度和时间尺度上的模拟,并且具有将原子细节与宏观观察联系起来的潜力。然而,由于需要先验知识,标准方法存在缺陷。基本原子机制及其能量学的知识。通常,仅提供少数涉及单原子运动的过程作为动力学蒙特卡罗模拟的输入,从而忽略了集体原子运动、空位产生和复杂原子过程的作用,并且使系统的时间演化产生偏差。在 ASE 提出的以 sim 和 dmc 为技术重点的研究中,我们计划通过纳入独特和创新的模式识别方案以及用于动态计算系统能量的自动化程序来克服这些限制。该过程将允许开发可能的原子事件的广泛数据库。如此收集的数据库将作为使用机器学习和数据挖掘进行进一步分析和处理的输入,以开发高效、稳健和准确的映射函数,这些函数将通过模拟外延生长的各种现象进行广泛测试,并通过与相关实验数据的比较进行验证。由此产生的映射函数将大大提高模拟的准确性和速度。更广泛的影响:我们的目标是为薄膜生长等现象的模拟创建准确且高效的计算算法,这将是 sim 和 dmc 技术重点领域的重大成就,因为跨学科方法产生的创新方法。然而,材料计算机设计算法的成功实施将成为 ASE 的一项突破,因为它将能够以大大降低的成本和更大的控制力来开发技术上重要的材料。这项工作还将为我们提供教育和推广活动的机会广泛的国家、国际和社会影响。除了 ITR 研究生和本科生的教育和培训之外,我们还将建议与 K-12 社区共同努力。我们打算通过研究和教育的结合来实现这一目标。我们的团队将把研究成果共同纳入物理学计算方法、数据挖掘、机器学习和自适应并行化技术的课程中。还将开发一个用于教学和外展目的的模块。两名高中教师将被招募到堪萨斯州立大学进行暑期课程。与 K-12 教师和学生定期开展的外展活动将有助于扩大具有 IT 和纳米科学素养的人员群体。 PI 与芬兰 Alatalo 教授、俄罗斯 Trushin 博士和土耳其 Durukanoglu 博士的现有国际合作将有助于在国际上推广拟议工作的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Talat Rahman其他文献

Preparing macromolecular systems on surfaces: general discussion
  • DOI:
    10.1039/c7fd90076g
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;Olga Barykina;James Batteas;Pol Besenius;Peter Beton;Nerea Bilbao;Manfred Buck;Lifeng Chi;Stuart Clarke;Giovanni Costantini;Jonathan Davidson;Philip Davies;Steven De Feyter;Yuri Diaz Fernandez;Deepak Dwivedi;Karl-Heinz Ernst;Amar Flood;Julien Gautrot;Ahmad Jabbarzadeh;Vladimir Korolkov;Angelika Kühnle;Markus Lackinger;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Sebastian Schwaminger;Johannes Seibel;Steven L. Tait;Joan Teyssandier;Han Zuilhof
  • 通讯作者:
    Han Zuilhof
Supramolecular effects in self-assembled monolayers: general discussion
  • DOI:
    10.1039/c7fd90073b
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;James Batteas;Pol Besenius;Peter Beton;Manfred Buck;Lifeng Chi;Giovanni Costantini;Philip Davies;Steven De Feyter;Yuri Diaz Fernandez;Deepak Dwivedi;Karl-Heinz Ernst;Amar Flood;Brandon Hirsch;Vincent Humblot;Robert Jones;Angelika Kühnle;Markus Lackinger;Nian Lin;Trolle R. Linderoth;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Neil Robinson;Marco Sacchi;Sebastian Schwaminger;Steven L. Tait;Phil Woodruff;Han Zuilhof
  • 通讯作者:
    Han Zuilhof
Supramolecular systems at liquid–solid interfaces: general discussion
  • DOI:
    10.1039/c7fd90074k
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;Pol Besenius;Peter Beton;Matthew Blunt;Manfred Buck;Neil R. Champness;Lifeng Chi;Stuart Clarke;Giovanni Costantini;Steven De Feyter;Yuri Diaz Fernandez;Deepak Dwivedi;Karl-Heinz Ernst;Amar Flood;Brandon Hirsch;Robert Jones;Angelika Kühnle;Markus Lackinger;Trolle R. Linderoth;Natalia Martsinovich;Andrew Mount;Martin Nalbach;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Neil Robinson;Marco Sacchi;Sebastian Schwaminger;Steven L. Tait;Phil Woodruff;Han Zuilhof
  • 通讯作者:
    Han Zuilhof
Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks
  • DOI:
    10.1039/c7fd90077e
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David Amabilino;Ioan Bâldea;James Batteas;Peter Beton;Nerea Bilbao;Giovanni Costantini;Jonathan Davidson;Steven De Feyter;Yuri Diaz Fernandez;Karl-Heinz Ernst;Brandon Hirsch;Ahmad Jabbarzadeh;Robert Jones;Angelika Kühnle;Markus Lackinger;Zhi Li;Nian Lin;Trolle R. Linderoth;Natalia Martsinovich;Martin Nalbach;Claire-Marie Pradier;Talat Rahman;Rasmita Raval;Neil Robinson;Federico Rosei;Marco Sacchi;Mario Samperi;Ana Sanz Matias;Alex Saywell;Sebastian Schwaminger;Steven L. Tait
  • 通讯作者:
    Steven L. Tait

Talat Rahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Talat Rahman', 18)}}的其他基金

REU Site: Research in Materials for Energy Applications
REU 网站:能源应用材料研究
  • 批准号:
    2348914
  • 财政年份:
    2024
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Understanding and Predicting Reactivity and Selectivity of Single Atom Catalyst
理解和预测单原子催化剂的反应性和选择性
  • 批准号:
    1955343
  • 财政年份:
    2020
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting Mesoscale Dynamics of Metallic Films on Semiconductors to Nanoscale Phenomena
合作研究:将半导体上金属薄膜的介观动力学与纳米尺度现象联系起来
  • 批准号:
    1710306
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Surface Coordination Chemistry: Toward Novel Functionality via Understanding Substrate Charge Transfer and Oxidation State
合作研究:表面配位化学:通过了解基底电荷转移和氧化态实现新功能
  • 批准号:
    1310327
  • 财政年份:
    2013
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Active Learning Strategies for Algebra-based Introductory Physics at UCF
UCF 基于代数的入门物理的主动学习策略
  • 批准号:
    1246024
  • 财政年份:
    2013
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
US-Pakistan: 36th International Nathiagali Summer College on Physics and Contemporary Needs: Islamabad, Pakistan 27th June - 8th July, 2011
美国-巴基斯坦:第 36 届国际 Nathiagali 物理与当代需求暑期学院:巴基斯坦伊斯兰堡 2011 年 6 月 27 日至 7 月 8 日
  • 批准号:
    1134698
  • 财政年份:
    2011
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
US-Pakistan Workshop: 31st International Nathiagali Summer College on Physics and Contemporary Needs: Islamabad, Pakistan
美国-巴基斯坦研讨会:第 31 届国际 Nathiagali 物理与当代需求暑期学院:巴基斯坦伊斯兰堡
  • 批准号:
    0738666
  • 财政年份:
    2007
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Theoretical Studies of Chemisorption and Reactions at Catalyst Surfaces
催化剂表面化学吸附和反应的理论研究
  • 批准号:
    0548632
  • 财政年份:
    2006
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
US-Pakistan Workshop: 31st International Nathiagali Summer College on Physics and Contemporary Needs: Islamabad, Pakistan
美国-巴基斯坦研讨会:第 31 届国际 Nathiagali 物理与当代需求暑期学院:巴基斯坦伊斯兰堡
  • 批准号:
    0628943
  • 财政年份:
    2006
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Theoretical Studies of Chemisorption and Reactions at Catalyst Surfaces
催化剂表面化学吸附和反应的理论研究
  • 批准号:
    0741423
  • 财政年份:
    2006
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

920nm高重频飞秒激光用1微米ASE抑制型掺Nd磷酸盐玻璃光纤
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ASE理论的炎症性肠病自我管理分层支持模型构建与实证研究
  • 批准号:
    71904146
  • 批准年份:
    2019
  • 资助金额:
    19.5 万元
  • 项目类别:
    青年科学基金项目
超宽角度ASE吸收激光薄膜研究
  • 批准号:
    U1630123
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    联合基金项目
脂质转移蛋白基因AsE246在根瘤菌侵染和共生体发育中的共生互作机制研究
  • 批准号:
    31371549
  • 批准年份:
    2013
  • 资助金额:
    88.0 万元
  • 项目类别:
    面上项目
ASE-HSCCC-DPPH联用技术及在海洋天然活性物质筛选中的集成化研究
  • 批准号:
    21205138
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR- (ASE+EVS)-(dmc+sim): Coastal Modeling and Management
合作研究:ITR- (ASE EVS)-(dmc sim):海岸建模与管理
  • 批准号:
    0426811
  • 财政年份:
    2004
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR: (ASE)-(sim+dmc): Algorithms for Large-Scale Simulations of Turbulent Combustion
合作研究:ITR:(ASE)-(sim dmc):湍流燃烧大规模模拟算法
  • 批准号:
    0426857
  • 财政年份:
    2004
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
ITR-(ASE+NHS)-(dmc+sim): Simulation Transformation for Dynamic, Data-Driven Application Systems (DDDAS)
ITR-(ASE NHS)-(dmc sim):动态数据驱动应用系统 (DDDAS) 的仿真转换
  • 批准号:
    0426971
  • 财政年份:
    2004
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
ITR - (ASE) - (sim+dmc): Parallel Data Mining for Nanoscale Kinetic Monte Carlo Simulation Models
ITR - (ASE) - (sim dmc):纳米级动力学蒙特卡罗模拟模型的并行数据挖掘
  • 批准号:
    0428826
  • 财政年份:
    2004
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了