Three-dimensional spontaneous dynamic rupture models on geometrically complex faults with state-of-the-art frictional parameterization

具有最先进摩擦参数化的几何复杂断层的三维自发动态破裂模型

基本信息

  • 批准号:
    0838464
  • 负责人:
  • 金额:
    $ 17.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

Dynamic spontaneous earthquake rupture models have proven themselves to be valuable tools to investigate the physics of earthquakes and to help predict ground motion. These numerical models start from basic assumptions about material structure, frictional behavior, and fault geometry, and calculate the spatiotemporal evolution of fault slip (and often the resultant near-source ground motion). Such dynamic models typically use either laboratory-derived friction laws or realistically complex fault geometry, but not both. The researchers propose to bring dynamic earthquake modeling an important step forward by combining these two separate tracks: they will use laboratory-derived friction laws to model spontaneous rupture propagation and slip on faults with realistically complex geometry. They expect to obtain first-order effects in rupture propagation, slip, and ground motion that will differ from previous modeling efforts, leading to both a better understanding of the earthquake process and better predictions of faulting behavior and ground motion. Dynamic earthquake models have historically followed two tracks: 1) investigations of the effect of frictional parameterization and stress pattern on simple planar faults, and 2) investigations of the effects of fault geometry on the earthquake process, using simple frictional parameterizations. the PIs will combine these two tracks to produce a new generation of dynamic earthquake models. Data from laboratory experiments at high slip rates and theoretical models imply that at the high slip rates observed during earthquakes, the typical rate-and-state frictional formulation must be modified to incorporate a greater degree of weakening over a larger length scale. Additionally, research on faults with complex, asymmetrical geometry shows that temporal variation of normal stress, which is inevitable on non-planar faults, can have a significant effect on rupture dynamics. To correctly model both these aspects of faulting behavior, they will develop a modern frictional parameterization and use it to model the behavior of geometrically complex faults, such as systems with stepovers and branches. The new 3D finite element method that will incorporate a new, realistic method for off-fault stress relaxation, which is necessary to avoid pathological stress buildup on such fault systems. These important ingredients of earthquake physics have never before been combined in a single modeling method, and the result of such a combination will be a state-of-the art tool to model the physics of earthquakes. The researchers will address important questions about the behavior of faults at stepovers and branches, including determining if there are general rules for how to predict rupture path at branches, and the ability of rupture to span stepovers.The proposed research will have important implications for both earthquake science and the broader scientific and educational community. A key use of the modeling method will be to gain insight into the potential size of earthquakes on geometrically complex fault systems, such as those in the Los Angeles region. Many fault systems are bounded by geometrical features such as fault gaps and changes in segment orientation; the proposed numerical models will help determine the circumstances under which earthquake rupture may propagate across these segment boundaries, and generate larger earthquakes with larger ground motion. In addition, the proposed research will lead to better estimates of the slip distribution and rupture front evolution, which also strongly affect ground motion. The resulting improved earthquake source models can help in the probabilistic assessment of earthquake size and ground motion pattern, with subsequent potential impacts on seismic hazard and building code and design.
动态自发地震破裂模型已证明自己是研究地震物理学并帮助预测地面运动的有价值工具。 这些数值模型始于关于材料结构,摩擦行为和断层几何形状的基本假设,并计算断层滑移的时空演化(通常是所得的近源地面运动)。 这种动态模型通常使用实验室衍生的摩擦定律或现实的复杂断层几何形状,但并非两者兼而有之。 研究人员建议通过结合这两个单独的轨道来使动态地震建模一步:他们将使用实验室衍生的摩擦定律来对自发的破裂传播进行建模,并以现实复杂的几何形状在断层上滑落。 他们期望在破裂的传播,滑动和地面运动中获得一阶影响,这将与以前的建模工作不同,从而更好地了解地震过程,也可以更好地预测断层行为和地面运动的预测。动态地震模型从历史上遵循了两条轨道:1)对摩擦参数化和应力模式对简单平面断层的影响的研究,以及2)使用简单的摩擦参数化研究了断层几何形状对地震过程的影响。 PI将结合这两个轨道,以产生新一代的动态地震模型。实验室实验的数据以高滑动速率和理论模型表明,在地震期间观察到的高滑动速率时,必须修改典型的速率和状态摩擦配方,以纳入更大程度的削弱长度尺寸。 此外,对具有复杂,不对称几何形状的故障的研究表明,正常应力的时间变化(在非平面断层上都是不可避免的)会对破裂动力学产生重大影响。 为了正确地对故障行为的这两个方面进行建模,它们将开发现代的摩擦参数化,并使用它来建模几何复杂的故障的行为,例如带有Stepover和分支的系统。 新的3D有限元方法将结合一种新的,现实的方法,以避免过错压力放松,这对于避免在此类断层系统上避免病理压力是必要的。 这些地震物理学的这些重要成分从来没有以单个建模方法结合在一起,这种组合的结果将是建模地震物理学的最先进的工具。 研究人员将解决有关在Stepover和分支机构中故障行为的重要问题,包括确定是否有有关如何预测分支机构破裂路径的一般规则,以及破裂的能力跨越了阶梯范围。该拟议的研究将对地震科学和更广泛的科学和教育社区具有重要意义。 建模方法的关键用途是深入了解几何复杂断层系统(例如洛杉矶地区的地震的潜在大小)。 许多故障系统都受到几何特征的限制,例如故障差距和段方向的变化;提出的数值模型将有助于确定地震破裂可能在这些段边界传播的情况,并以较大的地面运动产生更大的地震。 此外,拟议的研究将导致对滑动分布和破裂前进化的更好估计,这也强烈影响地面运动。 最终改善的地震源模型可以帮助对地震大小和地面运动模式的概率评估,并随后对地震危害,建筑法规和设计产生潜在影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Oglesby其他文献

Quantifying Error Propagation in Data Flow Models
量化数据流模型中的误差传播
Towards Scalable Verification of Commercial Avionics Software
迈向商业航空电子软件的可扩展验证
Interactive Learning Tools: Animating Mechanics of Materials
交互式学习工具:材料力学动画
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Philpot;David Oglesby;R. Flori;Vikas Yellamraju;Richard H. Hall;N. Hubing
  • 通讯作者:
    N. Hubing
Interactive Learning Tools: Animating Statics
交互式学习工具:动画静态
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Hubing;David Oglesby;T. Philpot;Vikas Yellamraju;Richard H. Hall;R. Flori
  • 通讯作者:
    R. Flori

David Oglesby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Oglesby', 18)}}的其他基金

Collaborative Research: Dynamic fault rupture in the presence of 3D heterogenous tectonic stress: the case of the San Andreas Fault in Eastern San Gorgonio Pass
合作研究:三维异质构造应力存在下的动态断层破裂:以圣戈戈尼奥山口东部圣安德烈亚斯断层为例
  • 批准号:
    1623739
  • 财政年份:
    2016
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Exploring Deep Fault Mechanics by Identifying Non-Volcanic Tremor on Southern California Faults
通过识别南加州断层上的非火山震颤探索深层断层力学
  • 批准号:
    0943892
  • 财政年份:
    2010
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
The Long-Term Dynamics and Evolution of Geometrically Complex Fault Systems
几何复杂断层系统的长期动力学和演化
  • 批准号:
    0409836
  • 财政年份:
    2004
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Dynamic Rupture Propagation in the Presence of Thermally Driven Fluid Flow and Melting Due to Fault Slip: a Modeling Study
存在热驱动流体流动和断层滑动熔化时的动态破裂传播:建模研究
  • 批准号:
    0229391
  • 财政年份:
    2003
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Collaborative Research (USC/UCLA/UCR/SDSU): Continuing Study of Internal Structure, Dynamic Rupture, and Post-Earthquake Healing of the Hector Mine Rupture Zone
合作研究(USC/UCLA/UCR/SDSU):赫克托矿破裂带内部结构、动态破裂和震后修复的持续研究
  • 批准号:
    0229678
  • 财政年份:
    2003
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
The Long-Term Dynamics and Evolution of Dip-Slip Faults
倾滑断层的长期动力学和演化
  • 批准号:
    0106828
  • 财政年份:
    2001
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant

相似国自然基金

宽视角大尺寸裸眼真三维视频显示技术研究
  • 批准号:
    62335002
  • 批准年份:
    2023
  • 资助金额:
    241 万元
  • 项目类别:
    重点项目
原子尺寸大失配诱导的有序-无序结构设计与热电性能调控
  • 批准号:
    52372209
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
非均匀衰退场景下大尺寸锂离子动力电池优化充电研究
  • 批准号:
    62303278
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于细胞壁组分溶解-再生的木材强化及尺寸稳定性提升机制
  • 批准号:
    32371790
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
针对大尺寸样品超分辨成像的关键问题研究
  • 批准号:
    62375116
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
  • 批准号:
    10667938
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
  • 批准号:
    10741474
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Signaling mechanisms that modulate uterine 3D structure for pregnancy success
调节子宫 3D 结构以实现妊娠成功的信号机制
  • 批准号:
    10688107
  • 财政年份:
    2022
  • 资助金额:
    $ 17.19万
  • 项目类别:
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
  • 批准号:
    10379454
  • 财政年份:
    2021
  • 资助金额:
    $ 17.19万
  • 项目类别:
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
  • 批准号:
    10557129
  • 财政年份:
    2021
  • 资助金额:
    $ 17.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了