Signaling mechanisms that modulate uterine 3D structure for pregnancy success
调节子宫 3D 结构以实现妊娠成功的信号机制
基本信息
- 批准号:10688107
- 负责人:
- 金额:$ 41.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAnimalsBiologicalClinicalComputing MethodologiesConceptionsDefectDevelopmentEmbryoEndometrialEndometriumEnvironmentEpitheliumEstrogensFetal GrowthFetal Growth RetardationGeneticGoalsHealthHormonalHormonesHumanImage AnalysisInner Cell MassKnowledgeLocationLuteal PhaseMammalian OviductsMenstrual cycleMethodsModelingMolecularMusMutant Strains MiceOrganOutcomeOvarian Hyperstimulation SyndromeOvarian hormonePathologicPathway interactionsPatientsPatternPhasePhysiologicalPlacental InsufficiencyPlayPositioning AttributePre-EclampsiaPregnancyPregnancy OutcomePregnancy lossPremature BirthPreparationProgesteroneReproductive TechnologyResearchRoleSalineSerumShapesSignal PathwaySignal TransductionSourceSpontaneous abortionStimulusStructureSuperovulationTechnologyTestingThree-Dimensional ImageTimeTissuesUterusVisualizationWNT5A geneWomanassisted reproductionblastocystconfocal imagingearly pregnancyeggfertility improvementhealthy pregnancyhuman subjectimplantationimprovedinhibitorinsightmouse modelmutantnatural Blastocyst Implantationnovelnovel strategiesnutrient absorptionpregnantpublic health relevancereceptorsubfertilitysuccessthree dimensional structureuterine receptivity
项目摘要
PROJECT SUMMARY/ABSTRACT
Although much is known about the embryo during early development, the structural uterine
environment in which the early embryo develops is not well understood. A poor uterine environment at the time
of blastocyst entry and attachment can cause long lasting detrimental effects on the health of the growing
embryo, leading to defects such as miscarriage, placental insufficiency, intra-uterine growth restriction,
preeclampsia and preterm birth. Using confocal imaging in combination with 3D image analysis we have
identified and quantified dynamic changes in murine uterine luminal structure in preparation for implantation.
When applied to mouse mutants deficient in progesterone signaling, mice with excess progesterone signaling
or mice deficient in WNT5A signaling, with known molecular implantation defects, this approach reveals
striking abnormalities in uterine structure at the time of implantation.
The goal of this proposal is to determine, embryo and progesterone driven mechanisms that
guide uterine folding in preparation for embryo implantation and pregnancy success. In Aim 1 we will
determine how the embryo itself affects the 3D structure of the uterus. Using a time-course we will determine
the temporal pattern of fold formation along the mesometrial-anti mesometrial axis. We will determine if the
embryo is required as a physical object or as a biological signaling center to cause structural changes in the
uterine lumen. In Aim2 we will test the hypothesis that progesterone influences receptivity of the endometrium
by shaping uterine 3D structure. First we will assess endometrial folding in human subjects in both the
estrogen dominant proliferative and progesterone dominant secretory phase of the menstrual cycle. We will
then use physiological, supra-physiological progesterone treatment, and a mouse model of superovulation with
increased progesterone levels, to determine how progesterone regulates folding. We will also use mouse
mutants deficient in progesterone signaling to determine if progesterone regulates folding developmentally or
during early pregnancy. Studies in Aim 3 will determine if progesterone affects uterine luminal shape by
interacting with the WNT5A signaling pathway. We will also test if aberrant localization of embryos and
aberrant axis alignment, in aberrantly structured folds, explains the entirety of poor pregnancy outcomes in
aberrant folding mutants (superovulated and mutants deficient in WNT5A signaling).
The methods developed in this proposal will be crucial to analyze the uterine structure in three-
dimensions for different implantation-defective genetic mutants, pathological conditions, and will help uncover
novel molecular and structural pathways involved in successful implantation. The long-term vision of my
research is to identify novel uterine 3D structure based mechanisms that govern endometrial receptivity with
the goal of developing new approaches to improve fertility outcomes for assisted reproduction and potential
clinical situations for patients with hormonal disruptions.
项目概要/摘要
尽管人们对早期发育过程中的胚胎了解很多,但子宫的结构
早期胚胎发育的环境尚不清楚。当时子宫环境不好
囊胚进入和附着的过程可能会对生长中的健康造成长期持续的有害影响
胚胎,导致缺陷,如流产、胎盘功能不全、子宫内生长受限、
先兆子痫和早产。将共焦成像与 3D 图像分析相结合,我们得到了
识别并量化小鼠子宫腔结构在准备植入过程中的动态变化。
当应用于黄体酮信号传导缺陷的小鼠突变体时,黄体酮信号传导过量的小鼠
或 WNT5A 信号传导缺陷的小鼠,具有已知的分子植入缺陷,这种方法揭示了
着床时子宫结构明显异常。
该提案的目标是确定胚胎和孕酮驱动的机制
指导子宫折叠,为胚胎植入和成功妊娠做好准备。在目标 1 中,我们将
确定胚胎本身如何影响子宫的 3D 结构。使用时间进程我们将确定
沿着系膜-反系膜轴的褶皱形成的时间模式。我们将确定是否
胚胎需要作为物理对象或生物信号中心来引起结构变化
子宫腔。在 Aim2 中,我们将检验黄体酮影响子宫内膜容受性的假设
通过塑造子宫3D结构。首先,我们将评估人类受试者的子宫内膜折叠
月经周期中雌激素占主导的增殖期和孕激素占主导的分泌期。我们将
然后使用生理性、超生理性黄体酮治疗,并建立小鼠超数排卵模型
增加孕酮水平,以确定孕酮如何调节折叠。我们还将使用鼠标
黄体酮信号传导缺陷的突变体以确定黄体酮是否调节发育或折叠
怀孕初期。目标 3 的研究将确定黄体酮是否通过以下方式影响子宫腔形状:
与 WNT5A 信号通路相互作用。我们还将测试胚胎和胚胎的定位是否异常
异常的轴排列和结构异常的褶皱解释了妊娠结局不佳的全部原因
异常折叠突变体(超排卵和 WNT5A 信号传导缺陷的突变体)。
该提案中开发的方法对于分析三方面的子宫结构至关重要
不同植入缺陷基因突变体的尺寸、病理状况,并将有助于揭示
涉及成功植入的新分子和结构途径。我的长远愿景
研究旨在确定基于子宫 3D 结构的新型机制,以控制子宫内膜容受性
开发新方法以改善辅助生殖的生育结果和潜力的目标
荷尔蒙紊乱患者的临床情况。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Murine uterine gland branching is necessary for gland function in implantation.
小鼠子宫腺分支对于着床时的腺体功能是必需的。
- DOI:10.1101/2023.11.01.565233
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Granger,Katrina;Fitch,Sarah;Shen,May;Lloyd,Jarrett;Bhurke,Aishwarya;Hancock,Jonathan;Ye,Xiaoqin;Arora,Ripla
- 通讯作者:Arora,Ripla
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ripla Arora其他文献
Ripla Arora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 41.95万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别:
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别: