Collaborative Research: Joint inversion of crust and upper mantle structure in central and eastern Tibetan plateau and its margins

合作研究:青藏高原中东部及其边缘地壳上地幔结构联合反演

基本信息

  • 批准号:
    0838188
  • 负责人:
  • 金额:
    $ 18.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-15 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Actof 2009 (Public Law 111-5).(a) Broader significance of the projectHow does the Himalaya rise up to today's height? How is the Tibetan Plateau (TP) formed? How is the crust of plateau deforming to produce great earthquakes, such as the one we witnessed on May 12, 2008 in Wenchuan, China, which killed over 70,000 people? We know that the plateau is generated by the collision between India and Eurasia, which started about 60 million years ago. However, important details are missing. A major obstacle is our limited ability to "see" through 3D structure below the surface, making it difficult to relate surface geological structures and deformation to the underlying forces. The purpose of this project is to use a variety of seismic imaging techniques and unprecedented amount of seismic data that we will collect from global databases as well as those inside China to image the subsurface structure of central and eastern TP and its margins. These images will provide critical information to test key hypotheses on plateau formation and deformation.Our research has broad implications for fundamental questions about the mechanisms and processes of mountain building, plateau formation, continental deformation, and seismic hazards in the region. The project will be an excellent opportunity for international scientific collaboration with China. It will support one graduate student from U. Illinois and one from Saint Louis U. We will also engage undergraduates for seismology training and seismic data processing skills.(b) Technical description of the project.A great variety of models have been proposed to explain the uplifting, formation, and deformation of the Tibetan Plateau. A major problem is the limited resolution of seismic imaging of the sub-surface 3D structure, making it difficult to relate seismic parameters to geological structures and processes. We propose to use joint-inversion methods involving multiple datasets to improve resolution of both P and S structures of the lithosphere in the central and eastern TP. We propose to jointly interpret P travel times, receiver functions, and surface-wave dispersion measurements from both ambient noise correlation and traditional earthquake-based method to derive 3D models of P and S velocities and anisotropies. In seismic inversion, model parameters often trade off with each other. To improve resolution and to resolve the ambiguity, a combination of different data sets that have sensitivities to different parameters is required or a priori constraints have to be imposed. The abundance of data now accessible makes our joint inversions feasible.We are particularly interested in the crustal channel flow model, which suggests that mid-lower crust flows in response to topographic loading and the deformation of the upper crust is decoupled from the underlying mantle. We select central and eastern Tibet based on the need for sufficient data coverage and on our desire to study a sufficient large area to avoid possible bias from local heterogeneity and to compare the convergence regime (central Tibet) with the extrusion regime (E. Tibet).The key questions we seek to address include:(1) mid-crust channel flow: Is there evidence for widespread mid-crust channel flow? Where in the plateau does it occur?(2) directions of crustal channel flow: What are the directions of the channel flow? How does the direction change from central Tibet to eastern Tibet and to the southeastern and northeastern margins?(3) coupling or decoupling of crustal and mantle deformation: How does deformation change with depth? Is the upper crust deformation decoupled from the deformation in the mantle lithosphere?(4) changes of structure and deformation from central Tibet to eastern Tibet: What is the extent of the India lithosphere underthrusting beneath the TP? What are the differences and connections in structures and deformation at depth among different regions? What controls do the major structures at the margins exert on the crustal and mantle deformation?
该奖项是根据2009年《美国复苏与再投资法》(公法111-5)资助的。藏族高原(TP)是如何形成的?高原的外壳如何产生巨大的地震,例如我们在2008年5月12日在中国韦库恩(Wenchuan)目睹的地震造成的地震,造成超过70,000人丧生?我们知道高原是由印度和欧亚大陆之间的碰撞产生的,该碰撞始于大约6000万年前。但是,缺少重要的细节。一个主要的障碍是我们有限的能力通过表面下方的3D结构“看到”,因此很难将表面地质结构和变形与基础力相关联。该项目的目的是使用各种地震成像技术和前所未有的地震数据,我们将从全球数据库以及中国内部的数据库中收集,以形象中央和东部TP及其边缘的地下结构。这些图像将提供关键的信息,以检验有关高原形成和变形的关键假设。我们的研究对该地区的基本问题和过程具有广泛的意义。该项目将是与中国国际科学合作的绝佳机会。它将支持来自美国伊利诺伊州的一名研究生,以及来自圣路易斯U的一名研究生,我们还将吸引本科生进行地震学培训和地震数据处理技能。(b)对项目的技术描述。已经提出了各种各样的模型来解释藏族高原的振奋,形成和变形。一个主要问题是地下3D结构的地震成像的有限分辨率,因此很难将地震参数与地质结构和过程联系起来。我们建议使用涉及多个数据集的联合发生方法来改善中央和东部TP中岩石圈的P和S结构的分辨率。我们建议从环境噪声相关和基于传统地震的方法中共同解释P旅行时间,接收器函数和表面波色散测量,以得出P和S速度和各向异性的3D模型。 在地震反演中,模型参数通常相互交易。为了改善分辨率并解决歧义,需要对不同参数具有敏感性的不同数据集的组合,或者必须施加先验约束。现在,可访问的数据丰度使我们的联合反转可行。我们对地壳通道流模型特别感兴趣,这表明中慢地壳流动响应地形负载响应于地形负载,并且上皮的变形与下面的地幔脱钩。 我们根据需要进行足够的数据覆盖范围以及我们研究足够大面积以避免局部异质性可能偏见并比较融合制度(中央西藏)与挤压方案(E.藏族)的愿望(E. tibet)的愿望(E. tibet)。 (2)地壳通道流的方向在哪里发生:通道流的方向是什么?方向如何从西藏中部到东部以及东南边缘和东北边缘?(3)地壳和地幔变形的耦合或解耦:变形如何随深度而变化?上皮变形是否与地幔岩石圈的变形脱钩?(4)结构和从西藏中部到东部西藏的变化的变化:印度岩石圈在TP下的污染程度是多少?不同区域之间深度的结构和变形的差异和连接是什么?边缘在地壳和地幔变形上施加的主要结构有哪些控制?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Song其他文献

Comparison of Highly-Weathered Acid Soil CEC Determined by NH4OAc (pH = 7.0) Exchange Method and BaCl2-MgSO4 Forced-Exchange Method
NH4OAc(pH=7.0)交换法与BaCl2-MgSO4强制交换法测定强风化酸性土CEC的比较
  • DOI:
    10.4236/as.2021.129059
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangzheng Kong;Decheng Li;Xiaodong Song;Ganlin Zhang
  • 通讯作者:
    Ganlin Zhang
Experimental study on noise pre-processing for a low bit rate speech coder
低码率语音编码器噪声预处理实验研究
Joint Inversion for Lithospheric Structures: Implications for the Growth and Deformation in Northeastern Tibetan Plateau
岩石圈结构联合反演:对青藏高原东北部生长和变形的影响
  • DOI:
    10.1029/2018gl077486
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yangfan Deng;Jiangtao Li;Xiaodong Song;Lupei Zhu
  • 通讯作者:
    Lupei Zhu
Support for differential inner core superrotation from earthquakes in Alaska recorded at South Pole station
南极站记录的阿拉斯加地震对内核差异超旋转的支持
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaodong Song;Anyi Li
  • 通讯作者:
    Anyi Li
Waxy rice amylopectin towards stretchable elastic conductive hydrogel for human motion detection
糯米支链淀粉用于人体运动检测的可拉伸弹性导电水凝胶
  • DOI:
    10.1039/d0nj05258b
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaodong Song;Xiaxin Qiu;Xiaowen Huang;Yaqing Tu;Qiuhua Zhao;Ruyi Sun;Lidong Zhang
  • 通讯作者:
    Lidong Zhang

Xiaodong Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Song', 18)}}的其他基金

Anisotropic structure of Earth's inner core from noise correlations
从噪声相关性看地球内核的各向异性结构
  • 批准号:
    1620595
  • 财政年份:
    2016
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Theoretical and Observational Studies of Surface Wave Attenuation From Ambient Noise
环境噪声表面波衰减的理论和观测研究
  • 批准号:
    1215824
  • 财政年份:
    2012
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Probing the Earth's Core and Lowermost Mantle
探测地球的核心和最底层的地幔
  • 批准号:
    0409251
  • 财政年份:
    2004
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
"CSEDI Collaborative Research: Observational and Theoretical Constraints on the Structure and Rotation of the Inner Core"
《CSEDI合作研究:内核结构和旋转的观测和理论约束》
  • 批准号:
    0330749
  • 财政年份:
    2004
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Structure and Dynamics of Earth's Core and Lowermost Mantle
地核和最低地幔的结构和动力学
  • 批准号:
    0106544
  • 财政年份:
    2001
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Constraining the Structure and Rotation of the Inner Core
约束内核的结构和旋转
  • 批准号:
    9902755
  • 财政年份:
    1999
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Constraining the Structure and Rotation of the Inner Core
约束内核的结构和旋转
  • 批准号:
    0096025
  • 财政年份:
    1999
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Resolving the Structure and Rotation of the Inner Core
解析内核的结构和旋转
  • 批准号:
    9706201
  • 财政年份:
    1997
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Probing the Earth's Core
探测地核
  • 批准号:
    9506708
  • 财政年份:
    1995
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant

相似国自然基金

基于空时域信息联合的雷达与通信系统协作式频谱共享方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
智能网联汽车轨迹规划与通信协作的联合优化理论与关键技术研究
  • 批准号:
    61872158
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
应用于中继协作通信的多Reed-Muller码的联合最优构造和联合译码研究
  • 批准号:
    61771241
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
多信源协作网络编码与QC-LDPC码的联合设计和迭代译码研究
  • 批准号:
    61501256
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
车辆协作通信快变信道建模及联合同步与信道估计的研究
  • 批准号:
    61371115
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
  • 批准号:
    2230086
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
  • 批准号:
    2230087
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了