SGER: A Novel Multi-Scoring Functions Sampling Approach to Impove Protein Modeling Resolution and It's Applications in Protein Loop Structure Prediction

SGER:一种提高蛋白质建模分辨率的新型多评分函数采样方法及其在蛋白质环结构预测中的应用

基本信息

项目摘要

The value of computer-generated protein structural models in biological research and practice relies critically on their accuracy. However, development of high-resolution computational approaches that can reliably produce protein structural models with or close to experimental quality remains an unsolved problem, though significant advances have been made in the past ten years. The main difficulties include the tremendously large and complex protein conformation space and, more importantly, the absence of scoring functions with satisfactory accuracy as well as sensitivity. In this project, the research seeks to answer a challenging question ? can one still model protein structures with high accuracy using the existing scoring functions which are potentially insensitive and inaccurate? Different from the common approaches of globally optimizing a scoring function describing the conformational energy, the investigators explore a new direction to model protein structures via efficiently sampling the common low score regions in multiple carefully-selected knowledge-based, physics-based, or regression-based scoring functions. This new approach addresses the scoring function insensitivity problem based on the assumption that the native or native-like conformations should satisfy most of the existing good scoring functions by yielding low score values. Sampling multiple scoring functions allows toleration of insensitivity and deficiency in individual scoring functions and identification of conformations that can best satisfy most scoring functions, which will eventually lead to significant resolution improvement. The investigators verify this sampling strategy by applying it to a proof-of-concept ab initio protein loop structure prediction problem. The work involves integrating multiple scoring functions, including triplet torsion angle score, physical energy, distance-based potential, loop closure score, and others, into the sampling scheme with the goal of reliably predicting loop backbone structures with near experimental resolution. The computational tools for loop structure prediction are being made available as a software package to the protein modeling research community.
计算机生成的蛋白质结构模型在生物学研究和实践中的价值关键取决于其准确性。然而,尽管在过去十年中已经取得了重大进展,但能够可靠地生成具有或接近实验质量的蛋白质结构模型的高分辨率计算方法的开发仍然是一个未解决的问题。主要困难包括巨大且复杂的蛋白质构象空间,更重要的是,缺乏具有令人满意的准确性和灵敏度的评分函数。在这个项目中,研究试图回答一个具有挑战性的问题?人们仍然可以使用可能不敏感且不准确的现有评分函数来高精度地模拟蛋白质结构吗?与全局优化描述构象能量的评分函数的常见方法不同,研究人员通过在多个精心选择的基于知识、基于物理或回归的多个精心选择的常见低分区域中探索了蛋白质结构建模的新方向。基于评分函数。这种新方法基于以下假设解决了评分函数不敏感问题:天然或类天然构象应通过产生低分值来满足大多数现有的良好评分函数。对多个评分函数进行采样可以容忍各个评分函数的不敏感性和缺陷,并识别最能满足大多数评分函数的构象,这最终将导致分辨率的显着提高。 研究人员通过将其应用于从头开始的概念验证蛋白质环结构预测问题来验证这种采样策略。这项工作涉及将多种评分函数(包括三重态扭转角评分、物理能量、基于距离的势能、闭环评分等)集成到采样方案中,目的是以接近实验分辨率的方式可靠地预测环主干结构。用于环结构预测的计算工具正在作为软件包提供给蛋白质建模研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaohang Li其他文献

An improved statistics-based backbone torsion potential energy for protein loop structure modeling
用于蛋白质环结构建模的改进的基于统计的主干扭转势能
Pareto-Based Optimal Sampling Method and Its Applications in Protein Structural Conformation Sampling
基于Pareto的最优采样方法及其在蛋白质结构构象采样中的应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaohang Li;Ashraf Yaseen
  • 通讯作者:
    Ashraf Yaseen
VAIM-CFF: A variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions
VAIM-CFF:一种变分自动编码器逆映射器解决方案,用于从深度虚拟独占反应中提取康普顿形状因子
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manal Almaeen;Tareq Alghamdi;B. Kriesten;Douglas Adams;Yaohang Li;Huey
  • 通讯作者:
    Huey
Improving performance via computational replication on a large-scale computational grid
通过大规模计算网格上的计算复制提高性能
cFAT-GAN: Conditional Simulation of Electron–Proton Scattering Events with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversarial Network
cFAT-GAN:通过特征增强和转换的生成对抗网络对不同束流能量的电子-质子散射事件进行条件模拟
  • DOI:
    10.1007/978-981-16-3357-7_10
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Velasco;E. McClellan;N. Sato;P. Ambrozewicz;Tianbo Liu;W. Melnitchouk;M. Kuchera;Y. Alanazi;Yaohang Li
  • 通讯作者:
    Yaohang Li

Yaohang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaohang Li', 18)}}的其他基金

Workshop: 2011 NSF CAREER Proposal Writing Workshop
研讨会:2011 NSF 职业提案写作研讨会
  • 批准号:
    1110356
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Sampling Approaches for Protein Modeling Applications
职业:蛋白质建模应用的新型采样方法
  • 批准号:
    1066471
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Sampling Approaches for Protein Modeling Applications
职业:蛋白质建模应用的新型采样方法
  • 批准号:
    0845702
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Teaching of Grid Computing to Undergraduate Students by using a Workflow Editor
协作研究:使用工作流编辑器加强本科生的网格计算教学
  • 批准号:
    0737208
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Identification of candidate genes for quantitative traits and evaluation of genetic resource diversity of a novel model plant, Setaria, using NGS
利用NGS鉴定新型模式植物狗尾草数量性状候选基因及遗传资源多样性评价
  • 批准号:
    23K05279
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of phage technology to precise control of intestinal microbiota disturbance for novel drug discovery
开发噬菌体技术精确控制肠道微生物群紊乱以促进新药研发
  • 批准号:
    23K18394
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了