Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data

用于多层次和多尺度网络数据融合和分析的新分析和计算方法

基本信息

  • 批准号:
    2311297
  • 负责人:
  • 金额:
    $ 24.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

COVID-19 has claimed nearly 6.6 million lives and made many prosperous nations with well-run healthcare systems weaker. One important lesson learned from this pandemic is that non-pharmaceutical public health interventions are critical to suppress the epidemic curve at the beginning of the epidemic breakout. Mild interventions with minimal impact on normal life that are still capable to effectively reduce the epidemic spread are highly desirable. Such interventions as, for example, social distancing and case isolation are very effective strategies to suppress the pandemic. However, in the U.S., such mitigation measures rely on individuals' self-reporting mechanisms, which are time-consuming to collect and error-prone. The current project aims to develop more accurate and computationally efficient statistical tools to enhance efficiency of mitigation measures at a broader front. This project offers multiple unique opportunities for students to participate in cutting-edge and interdisciplinary research at the interface of statistics and bio-surveillance.In this project, by analyzing mobility data, the investigators aim to develop a suite of analytical and computational approaches that enables the early detection of the epidemic outbreak and accurate identification of infected individuals. Compared to self-reporting mechanisms, mobility data contains non-continuous individualized information and can be easily obtained from the public domain. Both the contact and mobility data can be naturally represented as networks (graphs), where the individual node is a location or a person (or a group of people), and its edges (connections) correspond to measures of contact or mobility between the nodes. The project will develop a series of novel statistical and machine learning methods for reconstructing pseudo-transmission time, identifying the infected individuals, detecting potential connections related to transmission pathways and infectious individuals using large-scale mobility data, as well as hypothesis testing for the differences between networks under various interventions. The results of the project will be applicable to a wide range of bio-surveillance tasks and will contribute to the wellbeing of our society as a whole.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Covid-19夺去了近660万人的生命,并使许多繁荣国家的医疗保健系统较弱。从这个大流行中学到的一个重要的教训是,非药物公共卫生干预措施对于在流行病突破开始时抑制流行曲线至关重要。非常需要有效地减少流行病的正常生命的轻度干预措施对正常生活的影响最小。例如,例如,社会疏远和隔离案例是抑制大流行的非常有效的策略。但是,在美国,这种缓解措施依赖于个人的自我报告机制,这些机制耗时,这些机制耗时易于收集和容易出错。当前的项目旨在开发更准确和计算上有效的统计工具,以提高更广泛的方面缓解措施的效率。该项目为学生提供了多个独特的机会,可以在统计和生物保育的界面上参与尖端和跨学科研究。在该项目中,通过分析流动性数据,研究人员旨在开发一系列分析和计算方法,从而能够早期发现流行病爆发和被感染个体的准确发现。与自我报告的机制相比,移动性数据包含非连续的个性化信息,并且可以轻松从公共领域获得。触点和移动性数据都可以自然表示为网络(图),其中单个节点是位置或一个人(或一组人),其边缘(连接)对应于节点之间的接触或移动性度量。该项目将开发一系列新颖的统计和机器学习方法,用于重建伪传输时间,识别受感染的个体,检测使用大规模流动性数据以及在各种介入下网络之间差异的假设测试的潜在连接和传染性个人有关。该项目的结果将适用于广泛的生物保育任务,并将为整个社会的福祉做出贡献。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子优点评估来支持,并具有更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Ma其他文献

Noninvasive imaging of hepatocyte IL-6/STAT3 signaling pathway for evaluating inflammation responses induced by end-stage stored whole blood transfusion
肝细胞IL-6/STAT3信号通路无创成像评估终末期储存全血输注引起的炎症反应
  • DOI:
    10.1007/s10529-019-02688-0
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhengjun Wang;Yulong Zhang;Qianqian Zhou;Ping Ma;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus
中国太湖北端沉积物风险评估:化学分析和摇蚊慢性毒性测试相结合
Large-sized graphene oxide nanosheets increase DC–T cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2.
大尺寸氧化石墨烯纳米片可增加 DC-T 细胞突触接触以及 DC 疫苗针对 SARS-CoV-2 的功效。
  • DOI:
    10.1002/adma.202102528
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Qianqian Zhou;Hongjing Gu;Sujing Sun;Yulong Zhang;Yangyang Hou;Chenyan Li;Yan Zhao;Ping Ma;Liping Lv;Subi Aji;Shihui Sun;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
A learning method of Bayesian network structure
一种贝叶斯网络结构的学习方法
Design of cold-formed thin-walled steel fixed-ended channels with complex edge stiffeners under axial compressive load by direct strength method
轴向压缩载荷下复杂边缘冷弯薄壁型钢固定端槽钢直接强度法设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chun Gang Wang;Ping Ma;Dai Jun Song;Xin Yong Yu
  • 通讯作者:
    Xin Yong Yu

Ping Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Ma', 18)}}的其他基金

ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
  • 批准号:
    2319279
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
ATD: Nonparametric Testing and Fast Computing Methods for Spatiotemporal Models with Applications to Threat Detection
ATD:时空模型的非参数测试和快速计算方法及其在威胁检测中的应用
  • 批准号:
    1925066
  • 财政年份:
    2019
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1440037
  • 财政年份:
    2013
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1438957
  • 财政年份:
    2013
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1222718
  • 财政年份:
    2012
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1055815
  • 财政年份:
    2011
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
Statistical Approaches to Integration of Mass Spectral and Genomic Data of Yeast Histone Modifications
酵母组蛋白修饰的质谱和基因组数据整合的统计方法
  • 批准号:
    0800631
  • 财政年份:
    2008
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Continuing Grant
CMG: Collaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG:协作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
  • 批准号:
    0723759
  • 财政年份:
    2007
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂海洋环境多水下结构系统振动声辐射分析的半解析联合计算方法
  • 批准号:
    12372196
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
高速永磁电机损耗计算与传热分析
  • 批准号:
    52311530085
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
磁性拓扑外尔金属和半金属高通量计算及物性分析
  • 批准号:
    12374160
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于全寿期的钢管混凝土抗弯刚度退化机理及计算方法研究
  • 批准号:
    52378117
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向实时视频分析的端云协作无服务器计算资源管理方法研究
  • 批准号:
    62302292
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
Data Science and Statistics Core
数据科学和统计核心
  • 批准号:
    10549489
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
  • 批准号:
    10725550
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
  • 批准号:
    10830050
  • 财政年份:
    2023
  • 资助金额:
    $ 24.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了