MRI: Acquisition of an In-Situ AFM/STM-TEM System for Interdisciplinary Nano-Research and Education at Michigan Tech
MRI:密歇根理工大学采购用于跨学科纳米研究和教育的原位 AFM/STM-TEM 系统
基本信息
- 批准号:0820884
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Technical AbstractThis proposal requests for an in-situ electrical-force nanoprobing system that allows the observation of nanoscale mechanisms and their direct correlation with quantitative mechanical and electrical measurements of nanomaterials. The nanoprobing for atomic force microscopy (AFM) and scanning tunneling microscopy (STM) measurements will be performed inside a transmission electron microscope (TEM) through a newly designed side-entry AFM/STM-TEM specimen holder. The combination of AFM and STM will enable the investigation of how mechanical and electrical stimulation affects the internal structure of novel materials. Many fundamental scientific activities in these areas could not be attempted without the new instrumentation and technique. New research includes fundamental studies to 1) describe the effect of deformation induced electrical properties in boron nitride and ZnO nanomaterials; 2) determine the mechanics of individual cellulose nanocrystals and their interface layer with a biopolymer matrix; 3) understand the effect of porosities and length scales on the mechanical performance of microactuators. The new system aids in describing the effect of metal-support interactions on nanoparticles? agglomeration in catalysts, and the surface curvature size effect on nanoparticle deformation. In addition, research will include development of molecular models that describe the stress and strain fields in the mechanical testing of nanocomposites, and design models of MEMS microactuators that utilize Si porous sensors. Extensive outreach and educational programs targeted at K-12 students are planned and will include students traditionally underrepresented in the sciences. Outreach will expose students to new scientific discoveries in nano-science and engineering. Students will observe, for the first time, the deformation of individual cellulose nanocrystals; deformation induced piezoelectric behavior in boron nitride nanotubes; pull-out testing of nanotubes from a polymer matrix; failure and adhesion of nanoparticles; and deformation in nanoporous materials in real time and space. Videos of these nanomechanisms will be presented in undergraduate and graduate classrooms to stimulate students? research interests and promote learning of emerging technologies.2. Non-Technical AbstractThe requested instrument enables material scientists to observe changes in the internal structure of materials under the application of external forces and voltages. This state-of-the art instrument fits into the sample holder of Michigan Tech?s existing transmission electron microscope (TEM). Use of a TEM allows scientists to view the internal structure of materials at nanometer-length scales (one billionth of a meter or 1,000 times thinner than a human hair). These nanoscale materials will be detected and manipulated using a scanning tunneling microscope (STM) and an atomic force microscope (AFM). Using the combination of these two techniques inside a TEM, scientists can not only "see" nanoscale features inside the materials but, can also measure electrical properties and strength of nanoscale materials. Better understanding of electrical and strength properties is essential for developing new and sustainable materials. For instance, these techniques will help scientists to better understand the change in electrical properties of boron nitride and zinc oxide nanomaterials that are central in developing advanced energy harvesting devices. In another application, the strength of lightweight and environmentally-friendly biopolymer composites can be improved through better engineering of the interface between the polymer matrix and cellulose nanomaterials. The new system will allow study of nanoparticle agglomeration in catalysts, the effect of porosities on the strength of microactuators, and stress and strain fields during the indentation of nanocomposites. In addition, the instrument will be used for outreach and educational programs for K-12 students, including those traditionally underrepresented in the science. Students will be exposed to the newest scientific discoveries in the fields of nano-science and engineering. Students will be exposed to cutting-edge research and will be able to observe structures at the nanoscale, learning how better engineering of materials can improve lives, make products more environmentally friendly, and better society. Moreover, the recorded movies of these nanomechanisms will be used to stimulate the research interests in undergraduate and graduate students and promote learning of emerging technologies.
1。技术摘要此提案要求建立一个原位电力纳米螺旋桨系统,该系统允许观察纳米级机制及其与纳米材料的定量机械和电测量的直接相关性。原子力显微镜(AFM)和扫描隧道显微镜(STM)测量的纳米螺旋射线将通过新设计的侧输入AFM/STM-TEM标本持有器在透射电子显微镜(TEM)内进行。 AFM和STM的组合将对机械和电刺激如何影响新材料的内部结构进行研究。如果没有新的仪器和技术,就无法尝试在这些领域的许多基本科学活动。新的研究包括至1)描述氮化硼和ZnO纳米材料中变形诱导的电性能的影响; 2)确定单个纤维素纳米晶体的力学及其与生物聚合物基质的界面层; 3)了解孔隙度和长度尺度对微作用者机械性能的影响。新系统有助于描述金属支持对纳米颗粒的影响?催化剂中的团聚,表面曲率尺寸对纳米颗粒变形的影响。此外,研究将包括开发分子模型,这些模型描述了纳米复合材料的机械测试中的应力和应变场,以及使用SI多孔传感器的MEMS微型抗体机的设计模型。计划针对K-12学生的广泛的外展和教育计划,并将包括在科学中代表不足的学生。外展活动将使学生了解纳米科学和工程学方面的新科学发现。学生将首次观察单个纤维素纳米晶体的变形。变形诱导的氮化硼纳米管中的压电行为;从聚合物基质中对纳米管进行拉出测试;纳米颗粒的衰竭和粘附;和实时和空间中纳米多孔材料的变形。这些纳米力学的视频将在本科和研究生教室中介绍以刺激学生?研究兴趣并促进新兴技术的学习。2。非技术摘要该请求的仪器使材料科学家能够观察外部力和电压应用下材料内部结构的变化。这种最先进的仪器适合密歇根技术现有的传输电子显微镜(TEM)的样品持有人。使用TEM可以使科学家在纳米长度尺度上查看材料的内部结构(十亿分之一的尺寸或比人的头发薄的1000倍)。将使用扫描隧道显微镜(STM)和原子力显微镜(AFM)检测和操纵这些纳米级材料。利用这两种技术在TEM中的组合,科学家不仅可以“参见”材料中的纳米级特征,而且还可以测量纳米级材料的电性能和强度。更好地了解电气和强度特性对于开发新的和可持续的材料至关重要。例如,这些技术将帮助科学家更好地了解硝酸硼和氧化锌纳米材料的电性能变化,这些含量是开发高级能源收集设备的核心。在另一个应用中,可以通过更好地工程化聚合物基质和纤维素纳米材料之间的界面来改善轻质和环保生物聚合物复合材料的强度。新系统将允许研究催化剂中的纳米颗粒聚集,在纳米复合材料的压痕期间,孔隙率对微肌强度的影响以及应力和应变场。此外,该仪器将用于K-12学生的外展和教育计划,包括传统中的科学人数不足的学生。学生将接触到纳米科学和工程领域的最新科学发现。学生将接触到尖端的研究,并能够在纳米级观察结构,了解如何改善材料的工程能够改善生活,使产品更加环保和更好的社会。 此外,这些纳米力学的录制电影将用于刺激本科生和研究生的研究兴趣,并促进新兴技术的学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Shahbazian- Yassar其他文献
Reza Shahbazian- Yassar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Shahbazian- Yassar', 18)}}的其他基金
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334386 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Collaborative Research: Two-Dimensional Substrates to Study and Control the Atomic-Scale Structure of Metal Nanoclusters
合作研究:二维基底研究和控制金属纳米团簇的原子尺度结构
- 批准号:
1809439 - 财政年份:2018
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Fundamental Understanding of Growth and Inhibition of Calcium Oxalate Kidney Stones
对草酸钙肾结石生长和抑制的基本了解
- 批准号:
1710049 - 财政年份:2017
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Revealing the Inside of a Nanoscale Na-ion Battery: New Understanding on Sodium Intercalation in Cathodes
揭示纳米级钠离子电池的内部:对阴极钠嵌入的新认识
- 批准号:
1619743 - 财政年份:2015
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Fundamental Understanding on the Role of Structural Defects on Lithiation of Nanoscale Transition Metal Oxides
结构缺陷对纳米过渡金属氧化物锂化作用的基本认识
- 批准号:
1620901 - 财政年份:2015
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Fundamental Understanding on the Role of Structural Defects on Lithiation of Nanoscale Transition Metal Oxides
结构缺陷对纳米过渡金属氧化物锂化作用的基本认识
- 批准号:
1410560 - 财政年份:2014
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Revealing the Inside of a Nanoscale Na-ion Battery: New Understanding on Sodium Intercalation in Cathodes
揭示纳米级钠离子电池的内部:对阴极钠嵌入的新认识
- 批准号:
1200383 - 财政年份:2012
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Collaborative Research: Stronger than Glass Fibers, Stiffer than Steel Wires: A New Perspective into the Mechanics of Cellulose Nanocrystals
合作研究:比玻璃纤维更强,比钢丝更硬:纤维素纳米晶体力学的新视角
- 批准号:
1100806 - 财政年份:2011
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
A New Perspective on Energy Harvesting Nanowires: The Role of Chemistry and Structure of Nanowires
能量收集纳米线的新视角:纳米线化学和结构的作用
- 批准号:
0926819 - 财政年份:2009
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
相似国自然基金
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体三羧酸循环酶入核调控小鼠二细胞期全能性获得的功能和机制研究
- 批准号:32300608
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
- 批准号:82360657
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
- 批准号:82360461
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Equipment: MRI: Track 1 Acquisition of a High-Resolution X-ray Computed Microtomography System with In Situ Capabilities for Multidisciplinary Research and Education
设备: MRI:第 1 轨采购高分辨率 X 射线计算机显微断层扫描系统,具有用于多学科研究和教育的原位功能
- 批准号:
2320640 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
MRI: Acquisition of a Plasma Focused Ion Beam System for Dynamic In-situ Micro-Mechanical Testing Over Cryogenic and Elevated Temperatures
MRI:获取等离子体聚焦离子束系统,用于低温和高温动态原位微机械测试
- 批准号:
2215267 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
MRI: Acquisition of comprehensive x-ray scattering system for in situ studies
MRI:获取用于原位研究的综合 X 射线散射系统
- 批准号:
2216198 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
MRI: Acquisition of a Dual Transmission X-ray Diffractometer (DTXRD) for Studying the Local and Bulk Structure of Soft and Hard Materials under In situ and Operando Conditions
MRI:购买双透射 X 射线衍射仪 (DTXRD),用于研究原位和操作条件下软质和硬质材料的局部和整体结构
- 批准号:
2216231 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
MRI: Acquisition of Active Holders for in-situ and in-operando Transmission Electron Microscope Experiments
MRI:获取用于原位和操作中透射电子显微镜实验的主动支架
- 批准号:
2216026 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant