CAREER: A Laboratory Test of Radiation Belt Electron Acceleration and Diffusion by Whistler Chorus

职业:惠斯勒合唱团对辐射带电子加速和扩散的实验室测试

基本信息

  • 批准号:
    2238191
  • 负责人:
  • 金额:
    $ 52.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Beyond Earth's atmosphere is a universe where plasma is far more abundant than solid, liquid, and gas. At the dawn of the space age, Explorer 1 unexpectedly discovered ions and electrons in space plasma traveling at nearly the speed of light. These high-velocity particles are found in two donut-shaped regions around Earth called the Van Allen Radiation Belts. Understanding variations of the radiation belts have continued urgency as actionable space weather predictions are needed to protect critical infrastructure in space and on the ground. Measurements in the plasma of the outer belt commonly detect intense electromagnetic waves called whistler-mode waves, along with dramatic changes in the number of high-velocity electrons. Electrons are sometimes accelerated rapidly, in less than a second, and sometimes over hours. Models suggest that whistler-mode waves can produce these varied outcomes. The amplitude of whistler-mode waves and the angle between wave crests and Earth's magnetic field are predicted to determine the nature of interactions with electrons. The scientific objectives of this grant include a series of laboratory experiments in conditions relevant to the outer belt to study the interaction between whistler-mode waves and electrons. Work will consist of developing a new antenna array to generate whistler-mode waves while controlling the angle between wave crests and the magnetic field. Educational objectives focus on increasing participation in space plasma physics research with an early-undergraduate pathway to research that will allow students to be recruited from more diverse groups. Research students will be supported by an introductory seminar, and seminar materials will be distributed freely to help cultivate early undergraduate research across the space plasma physics community.With frequencies below the electron cyclotron frequency and resonant velocities often comparable to characteristic electron velocities, whistler-mode waves have potent wave-particle interactions with electrons that are central to descriptions of radiation belt dynamics. Theory and simulation indicate the amplitude of whistler-mode waves and the wave-normal angle are important variables in determining the character of interactions with electrons. A limitation of earlier lab work was the absence of high-resolution and high-precision measurements of electron velocity distribution functions (evdf's) needed to diagnose whistler-mode wave-electron interactions. This work will combine laboratory experiments with recent diagnostic advances to make definitive measurements of whistler-mode wave-electron interactions relevant to Earth's radiation belts. Experiments will use Thomson scattering evdf measurements and a whistler-mode wave antenna array to define the launched wave vector. Laboratory tests will answer three questions: how conditions determine whether whistler-mode waves produce rapid electron acceleration or slower diffusion; how the onset of nonlinear wave-particle interactions varies with wave-normal angle; and how quasilinear interactions responsible for diffusion vary with wave-normal angle. Answers to these questions are required to effectively model critical radiation belt processes, including the lifetime of trapped particles, the diffusion coefficients prevalent in numerical models, and the rapid variations leading to pulsating auroras and associated microbursts of relativistic electrons.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地球大气层之外的宇宙中,等离子体的数量远远超过固体、液体和气体。 在太空时代的初期,探索者一号意外地发现了太空等离子体中的离子和电子,其速度接近光速。 这些高速粒子存在于地球周围的两个环形区域,称为范艾伦辐射带。 了解辐射带的变化仍然紧迫,因为需要可行的空间天气预报来保护太空和地面的关键基础设施。 对外带等离子体的测量通常会检测到称为哨声模式波的强烈电磁波,以及高速电子数量的巨大变化。 电子有时会在不到一秒的时间内快速加速,有时甚至会持续数小时。 模型表明哨声模式波可以产生这些不同的结果。 预测哨声模式波的振幅以及波峰与地球磁场之间的角度,以确定与电子相互作用的性质。 这笔赠款的科学目标包括在与外带相关的条件下进行一系列实验室实验,以研究哨声模式波与电子之间的相互作用。 工作将包括开发一种新的天线阵列,以产生哨声模式波,同时控制波峰和磁场之间的角度。 教育目标侧重于增加对空间等离子体物理研究的参与,并通过本科早期研究途径,使学生能够从更多样化的群体中招募。 研究生将得到介绍性研讨会的支持,研讨会材料将免费分发,以帮助培养整个空间等离子体物理界的早期本科生研究。由于频率低于电子回旋频率,共振速度通常与特征电子速度相当,哨子模式波与电子具有强大的波粒相互作用,这是描述辐射带动力学的核心。 理论和模拟表明,哨声模式波的振幅和波法线角是确定与电子相互作用的特征的重要变量。 早期实验室工作的一个局限性是缺乏诊断哨声模式波电子相互作用所需的电子速度分布函数(evdf)的高分辨率和高精度测量。 这项工作将把实验室实验与最新的诊断进展相结合,对与地球辐射带相关的哨声模式波电子相互作用进行明确的测量。 实验将使用汤姆逊散射 evdf 测量和哨声模式波天线阵列来定义发射的波矢量。 实验室测试将回答三个问题:条件如何决定哨声模式波是否产生快速电子加速或较慢扩散;非线性波粒相互作用的开始如何随波法线角变化;以及导致扩散的拟线性相互作用如何随波法线角变化。 需要回答这些问题才能有效地模拟关键辐射带过程,包括捕获粒子的寿命、数值模型中普遍存在的扩散系数,以及导致脉动极光和相关的相对论电子微爆发的快速变化。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Schroeder其他文献

Addressing NCDs: is it really a global coalition?
应对非传染性疾病:这真的是一个全球联盟吗?
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Carrillo;A. Demaio;J. Miranda;Richard K. Burt;James Schroeder;M. C. Oliveira;D. Moraes;B. Simões;Z. Marjanovic
  • 通讯作者:
    Z. Marjanovic
Jaw Rotation in Dysarthria Measured With a Single Electromagnetic Articulography Sensor.
使用单个电磁发音描记术传感器测量构音障碍的下颌旋转。

James Schroeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Schroeder', 18)}}的其他基金

Tools for Fifth Generation Educational Environments
第五代教育环境的工具
  • 批准号:
    9361647
  • 财政年份:
    1994
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Standard Grant
Development of Undergraduate Communications Laboratory for Electrical Engineering Majors at University of Denver
丹佛大学电气工程专业本科通信实验室建设
  • 批准号:
    9152803
  • 财政年份:
    1991
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Standard Grant

相似国自然基金

面向晚期乳腺癌基因快速诊断的颗粒实验室系统研发
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
基于双模态数据的实验室地震强泛化能力机器学习预测研究
  • 批准号:
    42374070
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向多相光催化表界面研究的“微光纤上实验室”
  • 批准号:
    62375108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
超新星遗迹中湍流磁场放大效应的实验室研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
科学传播类:面向化工企业以及高校实验室的化工安全培训与多媒体科普传播
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    15 万元
  • 项目类别:
    专项基金项目

相似海外基金

Identification of Trichomonas vaginalis resistance targets to inform future drug development
确定阴道毛滴虫耐药靶标,为未来药物开发提供信息
  • 批准号:
    10462312
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
GENOMICE (Game Exploring Nuances in Offspring to Master Interactions of Chromosome Expression)
GENOMICE(探索后代细微差别以掌握染色体表达相互作用的游戏)
  • 批准号:
    10760456
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
Investigation of Novel Drug Targets for Stimulant Use Disorder
兴奋剂使用障碍新药靶点的研究
  • 批准号:
    10610011
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
Mystery of the Crooked Cell 2.0: CityLab's Next Generation Socioscientific Approach to Gene Editing
弯曲细胞 2.0 之谜:CityLab 的下一代基因编辑社会科学方法
  • 批准号:
    10448823
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
Cortical GABAergic mechanisms underlying rapid and sustained antidepressant responses
皮质 GABA 能机制是快速和持续抗抑郁反应的基础
  • 批准号:
    10370708
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了