HCC-Medium: End-user debugging of machine-learned programs

HCC-Medium:机器学习程序的最终用户调试

基本信息

  • 批准号:
    0803487
  • 负责人:
  • 金额:
    $ 61.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This is a project to give the end user some ability to debug programs that were written by a machine instead of a person, especially when the users are not expert programmers. This is the problem faced by users of a new sort of program, namely, one generated by a machine learning system. For example, intelligent user interfaces, categorizers of email and web sites, and recommender systems use machine learning to learn how to behave. This learned set of behaviors is a program. Learned programs do not come into existence until the learning environment has left the hands of the machine learning specialist, because they learn from the user's ongoing data. Thus, if these programs make a mistake, the only one present to debug them is the user. Giving end users the ability to debug such programs can improve the speed and accuracy of these systems.Specifically, the project envisions a fine-grained, iterative, interactive debugging process. First, a user notices an erroneous classification (with the system's help, based on reasoning about its own competence), such as an email message that might be misfiled. Second, the user asks for an explanation. Third, using the system's explanation, the user provides reasoning constraints, declaring, for example, that "today" is not an important word, and that anything from the company president should go into the "company" folder. The learned program reevaluates competence models and redoes its reasoning, giving the user an opportunity to immediately see the result of the change. The loop then begins again. Thus, the goals of this project are the following: 1. To help users identify reasoning problems, and to provide explanations of the behavior of machine-learned programs suitable for end users. 2. To elicit rich feedback from the user, incorporating it into the reasoning of the learned program. 3. To improve the speed and accuracy of machine learning by integrating this rich feedback into learning.In addition to the potential speed and accuracy improvement in the machine learner, users may become more productive and make fewer errors. Providing disclosure of the learned programs' reasoning engenders trust, and with it, increased willingness to use the system. Thus, this project has the potential to make significant advances in the user acceptance of machine learning in a variety of new, real-world applications. Combining human constraints and guidance with statistical learning could enable highly accurate learning from small data sets, which is critical to creating successful intelligent user interfaces. The project will also result in learning systems whose data sources and input features are easy to change and whose behavior is easy to control. In combining human-computer interaction principles with machine learning, this project opens opportunities for novel perspectives, especially in the realm of interdisciplinary education. Graduate students will be trained in this blended research area, and aspects of it will be incorporated in classes in both human-computer interaction and machine learning, and in other educational experiences for undergraduates and high school students.
这是一个项目,可以使最终用户有一些能力调试由机器而不是人编写的程序,尤其是当用户不是专家程序员时。 这是一种新程序的用户所面临的问题,即由机器学习系统生成的问题。例如,智能用户界面,电子邮件和网站的分类器以及推荐系统使用机器学习来学习如何表现。这套学习的行为集是一个程序。在学习环境留下了机器学习专家的手之前,学到的程序才出现,因为它们从用户正在进行的数据中学习。因此,如果这些程序犯了一个错误,则唯一一个审议的程序是用户。 使最终用户能够调试此类程序的能力可以提高这些系统的速度和准确性。特别是,该项目设想了一个细粒度,迭代,交互式调试过程。首先,用户会注意到错误的分类(基于系统的帮助,基于其自身能力的推理),例如可能会被误解的电子邮件。其次,用户要求解释。第三,使用系统的解释,用户提供了推理限制,例如声明“今日”不是一个重要的词,并且公司总裁的任何内容都应该进入“公司”文件夹。学识渊博的程序重新评估了能力模型并重做其推理,使用户有机会立即查看变更的结果。然后循环再次开始。因此,该项目的目标是:1。帮助用户确定推理问题,并提供适合最终用户的机器学习程序的行为的解释。 2。为了引起用户的丰富反馈,将其纳入了学习计划的推理中。 3。为了通过将这种丰富的反馈整合到学习中来提高机器学习的速度和准确性。除了在机器学习者的潜在速度和准确性提高的情况下,用户可能会变得更加生产力并造成更少的错误。提供学识渊博的计划的推理产生信任的披露,并提高使用该系统的意愿。 因此,该项目有可能在各种新的,现实世界中的应用程序中对用户接受机器学习的重大进展。 将人类约束和指导与统计学习结合起来可以从小型数据集中获得高度准确的学习,这对于创建成功的智能用户界面至关重要。该项目还将导致学习系统,其数据源和输入功能易于更改并且其行为易于控制。 在将人类计算机的互动原理与机器学习相结合时,该项目为新颖的观点打开了机会,尤其是在跨学科教育领域。 研究生将接受该混合研究领域的培训,其各个方面将在人类计算机互动和机器学习以及其他针对本科生和高中生的教育经验中纳入课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret Burnett其他文献

Principles for a Generalized Idea GardenImage
通用理念 GardenImage 的原则
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Jernigan;Amber Horvath;M. Lee;Margaret Burnett;Taylor Cuilty;Sandeep Kuttal;Anicia;Peters;Irwin Kwan;Faezeh Bahmani;Andrew;Ko;J. Christopher;Mendez;A. Oleson
  • 通讯作者:
    A. Oleson
Directive clinique de consensus sur la santé sexuelle de la femme
女性健康共识诊所指令
  • DOI:
    10.1016/s1701-2163(16)35342-7
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. Lamont;Krisztina Bajzak;C. Bouchard;Margaret Burnett;Sandra Byers;T. Cohen;William E. Fisher;Stephen Holzapfel;Vyta Senikas
  • 通讯作者:
    Vyta Senikas
Special report: The AgAID AI institute for transforming workforce and decision support in agriculture
  • DOI:
    10.1016/j.compag.2022.106944
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ananth Kalyanaraman;Margaret Burnett;Alan Fern;Lav Khot;Joshua Viers
  • 通讯作者:
    Joshua Viers
N<sup>o</sup> 279-Directive clinique de consensus sur la santé sexuelle de la femme
  • DOI:
    10.1016/j.jogc.2017.10.016
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Lamont;Krisztina Bajzak;Céline Bouchard;Margaret Burnett;Sandra Byers;Trevor Cohen;William Fisher;Stephen Holzapfel;Vyta Senikas
  • 通讯作者:
    Vyta Senikas
Using traits of web macro scripts to predict reuse
  • DOI:
    10.1016/j.jvlc.2010.08.003
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chris Scaffidi;Chris Bogart;Margaret Burnett;Allen Cypher;Brad Myers;Mary Shaw
  • 通讯作者:
    Mary Shaw

Margaret Burnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margaret Burnett', 18)}}的其他基金

WORKSHOP: Doctoral Consortium at the ACM Computer-Human Interaction (CHI 2023) Conference
研讨会:ACM 人机交互 (CHI 2023) 会议上的博士联盟
  • 批准号:
    2317080
  • 财政年份:
    2023
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Embedding Equitable Design through Undergraduate Computing Curricula
将公平设计纳入本科计算机课程
  • 批准号:
    2042324
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
CHS: Small: Software to Support Diverse Problem Solvers
CHS:小型:支持不同问题解决者的软件
  • 批准号:
    1528061
  • 财政年份:
    2015
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
CER: Collaborative Research: Computing Education through Collaborative Debugging
CER:协作研究:通过协作调试进行计算教育
  • 批准号:
    1240957
  • 财政年份:
    2012
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
HCC: Small: Supporting Males' and Females' Problem-Solving Strategies in End-User Debugging
HCC:小:支持男性和女性在最终用户调试中解决问题的策略
  • 批准号:
    0917366
  • 财政年份:
    2009
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
ITWF: Gender HCI Issues in Problem-Solving Software
ITWF:问题解决软件中的性别 HCI 问题
  • 批准号:
    0420533
  • 财政年份:
    2004
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Workshop Event: Programming Languages/Environments for the Educationally Disadvantaged
研讨会活动:针对教育弱势群体的编程语言/环境
  • 批准号:
    0324756
  • 财政年份:
    2003
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: Dependable End-User Software
ITR:协作研究:可靠的最终用户软件
  • 批准号:
    0325273
  • 财政年份:
    2003
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
ITR: End-User Software Engineering
ITR:最终用户软件工程
  • 批准号:
    0082265
  • 财政年份:
    2000
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
Experimental Software Systems: An Experimental Environment for Integrating Testing and Debugging in Form-Based Visual Programming Languages
实验软件系统:基于表单的可视化编程语言集成测试和调试的实验环境
  • 批准号:
    9806821
  • 财政年份:
    1998
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: End-to-end Verified Secure Sandboxed Systems
协作研究:SaTC:核心:中:端到端验证的安全沙盒系统
  • 批准号:
    2155235
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211952
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211951
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
CCF:SHF:Medium: Automated End-to-End Synthesis for Programmable Analog & Mixed-Signal Systems
CCF:SHF:Medium:可编程模拟的自动端到端综合
  • 批准号:
    2212179
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: End-to-end Verified Secure Sandboxed Systems
协作研究:SaTC:核心:中:端到端验证的安全沙盒系统
  • 批准号:
    2154964
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了