Electron Correlations and the Properties of Metals and Insulators
电子相关性以及金属和绝缘体的性质
基本信息
- 批准号:0801343
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports research and education in developing and improving methods for predicting the electronic and geometrical structure of both bulk materials and molecular complexes. Research extends Density functional theory (DFT) which has been a successful method for much of such matter. The primary extension improves the treatment of electron correlations at a distance which lead to the van der Waals interaction. This enhancement expands the use of DFT beyond dense condensed matter and isolated molecules, which can already be treated accurately, and provides capabilities for improved treatment of sparse matter, including biological matter, as well as van der Waals molecular complexes. The research expands on previous enhancements embodied in the non-empirical van der Waals density functional developed by this principal investigator and others. The work being undertaken widens the applicability of the van der Waals density functional to a broad range of system types, and increases its accuracy. Key applications will be addressed in the course of the research that cannot be handled by other methods and which demonstrate the efficacy of the enhancements. The result of this development will include a robust computer codes to be distributed, thus putting the method within easy access of the greater community. The goal of the work is to increase our limited understanding on how the van der Waals interaction merges with the short-range phenomena associated with density overlap, especially in systems too large to be feasibly treated with wave-function methods. Accordingly this allows treatment of of much larger systems than possible at present and increases our understanding of how certain large systems function.The effort undertaken has broader impacts with both scientific and educational consequences. Though the computational effectiveness of Density Functional Theory has already had a broad impact on materials science and engineering, the work proposed here will extend the usefulness of DFT to a wide range of previously impossible systems which are prevalent and important in many different fields. Early examples include the first calculation from first principles that predicts the twist of DNA. There will be capabilities added that will help with complex materials of the sort needed to study the the hydrogen storage problem for the possible future hydrogen fueled vehicles. Included in the plans are a study of molecular configurations that are relevant to understanding drug action and drug design. This work is shared widely in the scientific literature and conferences and the computer codes developed are shared.NONTECHNICAL SUMMARY:This award supports research and education in developing and improving methods for predicting the electronic and geometrical structure of both bulk matter and individual molecules. Research extends Density functional theory which has been a successful method for many types of materials. The primary extension improves the treatment of forces between molecules that are separated by modest to large distances. This enhancement provides capabilities for improved treatment of sparse matter, including biological matter, as well as weak molecular complexes. The work being undertaken widens the applicability of the theoretical and computational methods and increases accuracy. Key applications will be addressed in the course of the research that cannot be handled by other methods and which demonstrate the efficacy of the enhancements. The result of this development will include a robust computer codes to be distributed, thus putting the method within easy access of the greater community. This allows treatment of of much larger systems than possible at present and increases our understanding of how certain large systems function.The effort undertaken has broader impacts with both scientific and educational consequences. Though the computational effectiveness of Density Functional Theory has already had a broad impact on materials science and engineering, the work proposed here will extend the usefulness of the theory to a wide range of previously impossible systems which are prevalent and important in many different fields. Early examples include the first calculation that predicts the twist of DNA. There will be capabilities added that will help with complex materials of the sort needed to study the the hydrogen storage problem for the possible future hydrogen fueled vehicles. Included in the plans are a study of molecular configurations that are relevant to understanding drug action and drug design. This work is shared widely in the scientific literature and conferences and the computer programs are made freely available.
技术摘要:该奖项支持研究和教育在开发和改进方法,以预测散装材料和分子络合物的电子和几何结构。研究扩展了密度功能理论(DFT),这是许多此类问题的成功方法。主要的延伸力改善了导致范德华相互作用的距离的电子相关性的处理。这种增强扩展了DFT的使用超出密集的凝结物和孤立的分子,这些分子已经可以准确处理,并提供了改善稀疏物质处理的能力,包括生物学物质,以及范德尔·沃尔斯分子复合物。这项研究扩展了该主要研究者和其他人开发的非经验范德华密度的先前增强功能。 所进行的工作扩大了范德华密度在广泛的系统类型中的适用性,并提高了其准确性。 在研究过程中将解决关键应用程序,这些方法无法通过其他方法来处理,并证明了增强功能的功效。此开发的结果将包括一个可靠的计算机代码,从而使该方法轻松地访问了更大的社区。这项工作的目的是提高我们对范德华相互作用如何与与密度重叠相关的短距离现象合并的有限理解,尤其是在太大的系统中,无法通过波功能的方法处理。因此,这允许目前比目前更大的系统的处理,并提高了我们对某些大型系统运作方式的理解。所进行的努力对科学和教育后果产生了更大的影响。尽管密度功能理论的计算有效性已经对材料科学和工程产生了广泛的影响,但此处提出的工作将将DFT的有用性扩展到多种以前不可能的系统,这些系统在许多不同的领域中都是普遍且重要的。早期示例包括预测DNA扭曲的第一原理的第一个计算。还会添加功能,有助于研究研究未来氢气燃料车辆的氢存储问题所需的复杂材料。计划中包括与了解药物作用和药物设计有关的分子构型的研究。这项工作在科学文献和会议上广泛共享,开发的计算机代码是共享的。非技术性摘要:该奖项支持研究和教育在开发和改进方法,以预测散装物质和单个分子的电子和几何结构。研究扩展了密度功能理论,这是许多类型材料的成功方法。主要的延伸提高了分子之间以较小距离分离的分子之间的力处理。这种增强为改善稀疏物质的处理提供了能力,包括生物学物质以及弱分子复合物。 所进行的工作扩大了理论和计算方法的适用性,并提高了准确性。 在研究过程中将解决关键应用程序,这些方法无法通过其他方法来处理,并证明了增强功能的功效。此开发的结果将包括一个可靠的计算机代码,从而使该方法轻松地访问了更大的社区。这允许治疗比目前可能更大的系统的处理,并提高了我们对某些大型系统如何运作的理解。进行的努力对科学和教育后果产生了更大的影响。尽管密度功能理论的计算有效性已经对材料科学和工程产生了广泛的影响,但此处提出的工作将将理论的有用性扩展到多种以前不可能的系统,这些系统在许多不同的领域中都是普遍且重要的。早期示例包括预测DNA扭曲的第一个计算。还会添加功能,有助于研究研究未来氢气燃料车辆的氢存储问题所需的复杂材料。计划中包括与了解药物作用和药物设计有关的分子构型的研究。这项工作在科学文献和会议上广泛共享,并免费提供计算机程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Vanderbilt其他文献
Importance of dynamic lattice effects for crystal field excitations in quantum spin ice candidate Pr2Zr2O7
动态晶格效应对量子自旋冰候选 Pr2Zr2O7 晶体场激发的重要性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuanyuan Xu;Huiyuan Man;Nan Tang;Santu Baidya;Hongbin Zhang;Satoru Nakatsuji;David Vanderbilt;Natalia Drichko - 通讯作者:
Natalia Drichko
Model for the energetics of Si and Ge (111) surfaces.
Si 和 Ge (111) 表面的能量学模型。
- DOI:
10.1103/physrevb.36.6209 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
David Vanderbilt - 通讯作者:
David Vanderbilt
David Vanderbilt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Vanderbilt', 18)}}的其他基金
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1954856 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Emergent Functionalities in 3d/5d Multinary Chalcogenides and Oxides
DMREF:协作研究:3d/5d 多元硫属化物和氧化物中的新兴功能
- 批准号:
1629059 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1408838 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Enhanced functionalities in 5d transition-metal compounds from large spin-orbit coupling
DMREF/合作研究:通过大自旋轨道耦合增强 5d 过渡金属化合物的功能
- 批准号:
1233349 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1005838 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Berry-Phase Approaches to Electronic Structure Theory and their Applications
电子结构理论的贝里相方法及其应用
- 批准号:
0549198 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
0233925 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
9981193 - 财政年份:1999
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Bulk and Surface Structural Properties of Materials
材料的体积和表面结构特性
- 批准号:
9613648 - 财政年份:1996
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Postdoc: Research Training for CS&E Postdoctoral Associate in Electronic Structure Theory
博士后:计算机科学研究培训
- 批准号:
9625885 - 财政年份:1996
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
嗜热链球菌产酸、产黏特性与基因的相关性研究
- 批准号:32102007
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
嗜热链球菌产酸、产黏特性与基因的相关性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型超短序列抗菌肽的设计及其抗耐药活性与其序列与物理特性变化相关性研究
- 批准号:82173678
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
基于基质微结构-递药特性-拔截作用增益相关性解析黑膏药剂型科学内涵
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
基于碳基负载镧系金属氧化物复合材料吸波性能与本征特性相关性研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
TAVR leaflet fatigue modeling using physiological wear data
使用生理磨损数据进行 TAVR 小叶疲劳建模
- 批准号:
10517636 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
TAVR leaflet fatigue modeling using physiological wear data
使用生理磨损数据进行 TAVR 小叶疲劳建模
- 批准号:
10680609 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Electron correlations and superconductivity in Co compounds
Co化合物中的电子相关性和超导性
- 批准号:
16K05453 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electron Correlations and the Properties of Metals and Insulators
电子相关性以及金属和绝缘体的性质
- 批准号:
0456937 - 财政年份:2005
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Electron Correlations and Properties of Metals and Insulators
金属和绝缘体的电子相关性和性质
- 批准号:
0093079 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant