Collaborative Research: Pilot Research on Language-Based Strategies for Creative Problem Solving
协作研究:基于语言的创造性问题解决策略的试点研究
基本信息
- 批准号:0757490
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When people reformulate a problem space, previously unseen structure emerges. This process can be decomposed into two steps: People must first recognize and then exploit novel structure. We suggest that both of these steps can be improved by experienced application of creative nominalization. Here, nominalization refers to the process of recognizing a novel concept and naming it appropriately. This project demonstrates that experience in nominalization can improve problem solving and that successful training and experience on nominalization has the potential to enhance people?s intrinsic motivation, and thereby effectiveness, with respect to creative aspects of problem solving. In parallel, the project explores the potential for nominalization as a strategy to enhance machine-learning agents in reinforcement learning environments. Inspired by research on animal learning, reinforcement learning is a branch of artificial intelligence research concerned with creating motivated, learning agents. In the reinforcement-learning setting, nominalization has the potential to create a first-class object, something that can be directly manipulated, recorded, analyzed, and composed with other objects to form higher-order structures. In addition, reinforcement-learning researchers have recently begun to consider how learning might be enhanced with intrinsic motivation to explore problem spaces. Thus nominalization can function in reinforcement-learning settings both as a direct strategy and indirectly via intrinsic motivation. The most significant broader impact of this project will be to provide a new intervention that will enhance the creativity and efficacy of problem solvers working alone or in collaborative groups. If successful, the relative simplicity of the intervention and its general applicability would make it a prime candidate for wide dispersal to people in disparate walks of like.
当人们重新准备一个问题空间时,以前看不见的结构就会出现。这个过程可以分解为两个步骤:人们必须首先识别然后利用新颖的结构。我们建议通过经验丰富的创意名义化可以改善这两个步骤。在这里,名义化是指识别新颖概念并适当命名的过程。该项目表明,名义化的经验可以改善解决问题的解决,而成功的术语培训和经验有可能增强人们的内在动机,从而在解决问题的创造性方面方面有效。同时,该项目探讨了名义化作为增强机器学习剂在增强学习环境中的策略的潜力。受动物学习研究的启发,强化学习是人工智能研究的一个分支,涉及创建动机的学习代理。在强化学习环境中,名义化具有创建一流对象的潜力,即可以直接操纵,记录,分析和与其他对象组成的东西形成高阶结构。此外,加强学习研究人员最近开始考虑如何通过探索问题空间的内在动机来增强学习。因此,名义化可以在加强学习环境中作为一种直接的策略,并通过内在动机间接发挥作用。该项目最重要的更广泛的影响是提供一种新的干预措施,以提高问题解决者单独工作或在协作小组中工作的创造力和功效。如果成功的话,干预的相对简单性及其一般适用性将使它成为散布在不同之类的人中的广泛散布的主要候选人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Littman其他文献
Model-based reasoning
基于模型的推理
- DOI:
10.1016/j.compedu.2012.11.014 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen - 通讯作者:
Kenneth S. Aigen
Computably Continuous Reinforcement-Learning Objectives are PAC-learnable
可计算连续强化学习目标是 PAC 可学习的
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cambridge Yang;Michael Littman;Michael Carbin - 通讯作者:
Michael Carbin
Michael Littman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Littman', 18)}}的其他基金
EAGER: Training A Mobile Robot from Human Feedback via Income Learning
EAGER:通过收入学习根据人类反馈训练移动机器人
- 批准号:
1643413 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
- 批准号:
1508319 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
- 批准号:
1414931 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1414935 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Speeding Up Learning through Modeling the Pragmatics of Training
RI:小型:协作研究:通过培训语用建模加速学习
- 批准号:
1319618 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
- 批准号:
1065195 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1018152 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RI: Collaborative Research: Feature Discovery and Benchmarks for Exportable Reinforcement Learning
RI:协作研究:可导出强化学习的特征发现和基准
- 批准号:
0713148 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
HSD-DRU: The Role of Communication in the Dynamics of Effective Decision Making
HSD-DRU:沟通在有效决策动态中的作用
- 批准号:
0624191 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Evaluating Next Generation Probabilistic Planners
评估下一代概率规划器
- 批准号:
0329153 - 财政年份:2003
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
大龄飞行员视觉功能的衰退特点及知觉学习干预研究
- 批准号:32300913
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空战博弈对抗下的飞行员视觉—脑认知—操作力反馈增强交互机理研究
- 批准号:U2241228
- 批准年份:2022
- 资助金额:256.00 万元
- 项目类别:联合基金项目
空战对抗过程中的飞行员视觉、操作力与脑认知耦合机理研究
- 批准号:62171274
- 批准年份:2021
- 资助金额:64 万元
- 项目类别:面上项目
基于循证原则的中国民航运输航空飞行员核心胜任能力理论体系与评估技术研究
- 批准号:U2133209
- 批准年份:2021
- 资助金额:200 万元
- 项目类别:重点项目
昼夜节律紊乱对飞行员工作记忆影响的多巴胺调节机制研究
- 批准号:82101562
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Aeschi Model in Integrated Care: Treatment Development Study to Improve Outcomes for Suicidal Patients
综合护理中的阿埃斯基模型:改善自杀患者预后的治疗开发研究
- 批准号:
10575211 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
School-Partnered Collaborative Care (SPACE) for Pediatric Type 1 Diabetes
针对儿童 1 型糖尿病的学校合作协作护理 (SPACE)
- 批准号:
10640614 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: