Fast Nonlinear Model Predictive Control with First Principle Dynamic Models
使用第一原理动态模型的快速非线性模型预测控制
基本信息
- 批准号:0756264
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0756264, BieglerReal-Time Optimization (RTO) and Model Predictive Control (MPC) are important technologies for optimal process operation in the chemical and refining industry. Both NMPC and dynamic real-time optimization (D-RTO) allow the incorporation of first principle process models, which lead to on-line optimization strategies consistent with higher-level tasks, including scheduling and planning. Moreover, with recent advances in dynamic modeling, simulation and optimization, dynamic optimization has seen increasing industrial application, particularly for inherently transient processes. However, more detailed dynamic optimization models that reflect complex reaction and separation phenomena and multi- stage dynamic operation still need to be addressed - and solved as time-critical, on-line applications. Here, a major concern is that computational times needed to solve these large-scale optimizations lead to feedback delays in implementation that can degrade performance and possibly destabilize the process.This project addresses these issues and enables the realization of fast on-line dynamic optimization with first principle models. The PI plans to develop a class of sensitivity-based algorithms that separate dynamic optimization into background calculations, where most of the computation is performed, and on-line calculations, where a perturbed problem is solved very quickly. On-line computations are thus reduced by several orders of magnitude and become very fast, even for large, complex nonlinear models. These formulations are to be developed both for NMPC as well as state and parameter moving horizon estimation (MHE).Intellectual MeritThe intellectual merit of this activity deals with the development and analysis of sensitivity-based on-line optimization with first principle dynamic models, particularly Advanced-Step NMPC and MHE. The work should lead to nonlinear model predictive control and on-line dynamic optimization for large-scale chemical processes without the limitations of computational feedback delay. The research also deals with extensions to multi-stage dynamic optimization for tighter integration of planning and scheduling decisions, and robust problem formulations to deal with model mismatch and unmeasured disturbances. This approach will be extended to moving horizon estimation (MHE) problems. MHE strategies for nonlinear models have significant advantages over observers and Kalman filters, but their realization requires application of fast optimization strategies.Broader ImpactsBroader impacts include the application of this approach on two challenging industrial applications. These include a large-scale polymer process with detailed on-line reactor models and dynamic multi-stage operation, including grade changes. The PI will also consider on-line dynamic optimization strategies for gas separation processes. Characterized by load changes and dynamics with strong nonlinearities, performance of these systems can be greatly improved through efficient NMPC and MHE strategies. These concepts will also be integrated within a comprehensive optimization and modeling environment. Finally, graduate training is emphasized as a key component. Included in the educational plan are industrial internships and the development of courses and materials related to Enterprise Wide Optimization.
CBET-0756264,Bieglereal时间优化(RTO)和模型预测控制(MPC)是化学和炼油行业最佳过程运行的重要技术。 NMPC和动态实时优化(D-RTO)都允许合并第一个主要过程模型,这会导致在线优化策略与高级任务一致,包括调度和计划。 此外,随着动态建模,模拟和优化的最新进展,动态优化的工业应用增加了,尤其是对于固有的瞬态过程。 但是,反映复杂的反应和分离现象和多阶段动态操作的更详细的动态优化模型仍需要解决 - 并将其求解为时间关键时期的在线应用。 在这里,一个主要问题是,解决这些大规模优化所需的计算时间会导致实施中的反馈延迟,从而可以降低性能并可能破坏该过程。该项目解决了这些问题,并实现了通过第一原理模型实现快速的在线动态优化。 PI计划开发一类基于灵敏度的算法,该算法将动态优化分为背景计算,其中大多数计算都已执行,并在线计算中,在线计算中,解决了扰动问题。 因此,在线计算通过几个数量级降低,甚至对于大型,复杂的非线性模型也变得非常快。 这些配方既应针对NMPC,状态和参数移动范围估计(MHE)。Intlectual值得这项活动的智力优点涉及基于敏感性的在线优化的开发和分析,该优化具有第一原理动态模型,尤其是高级步骤NMPC和MHE。这项工作应导致非线性模型预测性控制和在线化学过程的在线动态优化,而无需局限计算反馈延迟。这项研究还涉及多阶段动态优化的扩展,以严格整合计划和调度决策,以及强大的问题表述,以处理模型不匹配和未衡量的干扰。这种方法将扩展到移动视野估计(MHE)问题。非线性模型的MHE策略比观察者和卡尔曼过滤器具有显着优势,但是它们的实现需要应用快速优化策略。BroaderImpactsBroader的影响包括将这种方法应用于两个具有挑战性的工业应用程序。其中包括具有详细的在线反应堆模型和动态多阶段操作(包括等级变化)的大型聚合物过程。 PI还将考虑对气体分离过程的在线动态优化策略。具有强大非线性的负载变化和动态的特征,通过有效的NMPC和MHE策略,可以大大提高这些系统的性能。这些概念也将集成到全面的优化和建模环境中。最后,强调研究生培训是关键组成部分。教育计划中包括工业实习以及与企业广泛优化有关的课程和材料的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenz Biegler其他文献
Lorenz Biegler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenz Biegler', 18)}}的其他基金
GOALI: Fast Nonlinear Model Predictive Control for Dynamic Real-time Optimization
GOALI:用于动态实时优化的快速非线性模型预测控制
- 批准号:
1160014 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
Academic Travel Support for the Process Systems Engineering Conference 2009 in Salvador Brazil: August 16-20, 2009
2009 年巴西萨尔瓦多过程系统工程会议的学术旅行支持:2009 年 8 月 16 日至 20 日
- 批准号:
0917447 - 财政年份:2009
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Development of Modeling and Optimization Tools for Hybrid Systems
混合系统建模和优化工具的开发
- 批准号:
0457379 - 财政年份:2005
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Collaborative Proposal: Large-Scale Optimization Strategies for Design under Uncertainty
协作提案:不确定性下的大规模设计优化策略
- 批准号:
0438279 - 财政年份:2005
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
Algorithmic Advances for Large-Scale Dynamic Process Optimization
大规模动态过程优化的算法进步
- 批准号:
0314647 - 财政年份:2003
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0121667 - 财政年份:2001
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
GOALI: Optimization of Pressure Swing Adsorption Systems for Air Separation
GOALI:空气分离变压吸附系统的优化
- 批准号:
9987514 - 财政年份:2000
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Workshop on Hybrid Technologies for Waste Minimization at Breckenridge, CO, July 15-16, 1999
废物最小化混合技术研讨会,科罗拉多州布雷肯里奇,1999 年 7 月 15-16 日
- 批准号:
9905825 - 财政年份:1999
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
U.S.-South Africa Cooperative Research: Attainable Regions and Mathematical Programming for Waste Minimization in Chemical Processes
美国-南非合作研究:化学过程中废物最小化的可实现区域和数学规划
- 批准号:
9810501 - 财政年份:1998
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Stable Dynamic Optimization Strategies for Large-Scale Chemical Processes
大规模化学过程的稳定动态优化策略
- 批准号:
9729075 - 财政年份:1998
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
相似国自然基金
跨声速强气动干扰下管道磁浮列车系统的非线性动力学模型与悬浮失稳机制
- 批准号:52305134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
- 批准号:12371393
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性磁流体空间分数阶模型长时间计算研究
- 批准号:12301516
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带有奇异敏感或非线性生产的趋化模型的定性研究
- 批准号:12301260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性滤波与非线性模型修正融合的大跨桥梁荷载-损伤识别方法研究
- 批准号:52308318
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10089406 - 财政年份:2020
- 资助金额:
$ 29.07万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10558479 - 财政年份:2020
- 资助金额:
$ 29.07万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10582237 - 财政年份:2020
- 资助金额:
$ 29.07万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10335155 - 财政年份:2020
- 资助金额:
$ 29.07万 - 项目类别: