Conference on Gauge Theory and Representation Theory
规范理论与表示论会议
基本信息
- 批准号:0738196
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal for a conference to be held at IAS in theframework of the Special Year ``New Connections ofRepresentation Theory to Algebraic Geometry and Physics''.Recent developments in representation theory, algebraic geometryand quantum field theory have uncovered strong connectionsbetween the following major branches of research: 1)Kazhdan-Lusztig theory, understood broadly as study of numericalinvariants of representations by methods of algebraic geometry;2) geometric Langlands duality program; 3) dualities of quantumfield theory such as $S$-duality and mirror symmetry. Inparticular, many of the relevant constructions have, or areexpected to have, natural explanations in the framework of4-dimensional supersymmetry gauge theory.The conference will bring together representation theorists,algebraic geometers and theoretical physicists whose work leadsto such connections, with the goal of advancing each of thesubjects, and achieving a deeper understanding of their roots ingauge theory. The following researchers have agreed toparticipate in the workshop: A. Beilinson, A. Braverman, T.Bridgeland, M. Douglas, D. Gaitsgory, E. Frenkel, A. Kapustin,M. Liu, G. Moore, H. Nakajima, N. Nekrasov, N. Saulina and E.Witten.Another important purpose of the conference is dissemination ofknowledge accumulated in each of the above mentioned areas amongexperts in the neighboring fields and graduate students. Thuswe expect it to contribute to a synthesis of the new methods inthese fields, and to forming a new generation of researchers.
This proposal for a conference to be held at IAS in theframework of the Special Year ``New Connections ofRepresentation Theory to Algebraic Geometry and Physics''.Recent developments in representation theory, algebraic geometryand quantum field theory have uncovered strong connectionsbetween the following major branches of research: 1)Kazhdan-Lusztig theory, understood broadly as study of numericalinvariants通过代数几何形状的方法表示; 2)几何兰兰兹二重性程序; 3)Quantumfield理论的双重性,例如$ s $ duality和镜像对称性。 Inparticular, many of the relevant constructions have, or areexpected to have, natural explanations in the framework of4-dimensional supersymmetry gauge theory.The conference will bring together representation theorists,algebraic geometers and theoretical physicists whose work leadsto such connections, with the goal of advancing each of thesubjects, and achieving a deeper understanding of their roots ingauge theory. 以下研究人员在研讨会上同意了Toparticipate:A。Beilinson,A。Braverman,T.Bridgeland,M。Douglas,D。Gaitsgory,E。Frenkel,A。Kapustin,M。 Liu,G。Moore,H。Nakajima,N。Nekrasov,N。Saulina和E.Witten。会议的另一个重要目的是在相邻领域和研究生和研究生的上述每个领域中积累了知识的传播。 因此,我们期望它有助于这些领域的新方法的综合,并形成新一代的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert MacPherson其他文献
Robert MacPherson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert MacPherson', 18)}}的其他基金
IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
- 批准号:
1441467 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
- 批准号:
0940733 - 财政年份:2010
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
IAS/Park City Mathematics Institute Mathematics Research Component
IAS/帕克城数学研究所数学研究部分
- 批准号:
0437137 - 财政年份:2004
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
- 批准号:
9900969 - 财政年份:1999
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Mentoring Program for Women in Mathematics
女性数学辅导计划
- 批准号:
9802179 - 财政年份:1998
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
IAS/Park City Mathematics Institute Faculty Enhancement Program
IAS/帕克城数学研究所师资增强计划
- 批准号:
9653447 - 财政年份:1997
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology of Algebraic Varieties
数学科学:代数簇的拓扑
- 批准号:
9627358 - 财政年份:1997
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
- 批准号:
9412914 - 财政年份:1995
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
相似国自然基金
基于晶体内精密超声行波构建理论的大量程纳米位移测量方法
- 批准号:52375526
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于静态红外快照光谱成像的航空发动机燃烧流场多参数测量系统理论及关键技术研究
- 批准号:62305339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
红外偏振全天时天文大地垂线偏差测量理论方法研究
- 批准号:42374011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
带有协变量测量误差的生存模型的阈值检测理论及应用
- 批准号:12301327
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
适用于新能源高渗透率区域的非接触式同步测量理论与方法
- 批准号:52377098
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Lattice Gauge Theory at the Intensity Frontier
强度前沿的格子规范理论
- 批准号:
2310571 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
- 批准号:
23K03394 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)