Collaborative Research: Separation of nanoparticles using gradient surfaces: multiscale simulations and experiments

合作研究:使用梯度表面分离纳米颗粒:多尺度模拟和实验

基本信息

  • 批准号:
    0731032
  • 负责人:
  • 金额:
    $ 29.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

National Science Foundation - Division of Chemical &Transport Systems Particulate & Multiphase Processes Program (1415)Proposal Number: 0731032 Principal Investigators: Drazer, German Affiliation: Johns Hopkins University Proposal Title: Collaborative Research: Separation of nanoparticles using gradientsurfaces: multiscale simulations and experiments The ability to guide particles to a desired location in a fluidic device while allowing them to remain suspended in solution is challenging since micro- and nano-particles undergo Brownian motion. We have conceived a technique that exploits Brownian motion itself to focus particles spatially by controlling the energy landscape on the bounding surfaces of a device. We exploit this particle focusing technique to create separation units for the continuous fractionation of suspended colloids. The conceived devices provide a novel approach to the separation of suspended particles based on the differential interaction of the species with affinity gradients created on the bounding walls of the device. The overall result is the vector separation of the mixture, in which different species move in different directions, thus allowing for continuous operation with higher separation power and peak capacity compared to one-dimensional systems. The strategy is to combine state-of-the-art microfabrication, with multiscale modeling and simulation, to design and experimentally test these micro- and nanofluidic separation devices.Intellectual merit: A deep understanding of particle-surface interactions is crucial to a successful design and optimization of the proposed separation devices. In contrast to the significant activity and advances in developing and refining experimental techniques needed to fabricate nanoscale materials or devices, the framework for understanding transport phenomena at nanometer scales is less developed, particularly in cases with significant geometric confinement as in the case of interest here, in which the channel dimension is comparable to the size of the suspended particles. Therefore, we propose a collaborative effort, combining critical experiments with multiscale modeling and simulations, all aimed at understanding the dominant aspects of particle-surface interactions under flow conditions with geometric confinement.Broader Impact. Scientific aspects: Brownian excursions of particles hamper applications in which one wants to address specific particles at specific positions within a fluidic device. The focusing scheme investigated in this work could be used to overcome those complications, and could be widely exploited in lab-on-a-chip devices. In this context, the potential extensions of this work are broad, given the high activity in the field of particle manipulation in fluidic devices, and in the field of active control of surface properties.Broader Impact. Education and Outreach aspects: The fundamental issues resulting from particle-surface interactions in our project, as well as the potential impact of harnessing molecular phenomena for technological applications, will be incorporated in modules designed for undergraduate and graduate level courses in "Molecular simulations" and "Interfacial Phenomena in Nanomaterials", which are currently part of IGERT programs in the participating institutions. These modules will provide the students with a clear example of the need for multidisciplinary teams in order to understand complex problems in nanoscale science and to be able to address challenging issues in nanotechnology. In addition, the present project will provide hands-on experience to undergraduate and high school students drawn from the different outreach and educational programs available at both institutions. The students will be part of a diverse team of researchers and, as a result, will be better prepared for the increasingly interdisciplinary field of biomolecular and chemical engineering. The students will present their results in conferences and workshops and will be responsible for maintaining a research webpage that will present the results in a timely manner and for the general public.
国家科学基金会 - 化学与运输系统部颗粒与多相过程计划(1415)提案编号:0731032首席研究人员:德国德国隶属关系:约翰·霍普金斯大学的提议标题:纳米粒子的分离:使用渐变的纳米粒子进行分离:使用渐变的纳米粒子进行验证量的跨度模拟和实验的能力,以允许求解颗粒的能力,以供应界面的设备,既有颗粒的设备,又是一个固定的设备。微粒子和纳米粒子经历布朗运动。我们构思了一种通过控制设备边界表面上的能量格局来利用布朗运动本身将颗粒聚焦的技术。我们利用这种粒子聚焦技术来创建分离单元,以连续分馏悬浮胶体的连续分馏。构想的设备基于该物种与设备边界壁上产生的亲和力梯度的差异相互作用提供了一种新颖的方法,可以将悬浮颗粒分离。总体结果是混合物的矢量分离,其中不同物种向不同的方向移动,因此与一维系统相比,具有较高的分离功率和峰值容量的连续运行。该策略是将最先进的微分化与多尺度建模和仿真相结合,以设计和实验测试这些微流体分离设备。智能优点:对粒子表面相互作用的深刻理解对于成功设计和优化了提议的分离设备至关重要。与制造纳米级材料或设备所需的显着活性和开发和完善实验技术的进展相反,在纳米尺度上理解运输现象的框架的发展较少,尤其是在这里具有明显的几何限制的情况下,例如在此兴趣的情况下,在此情况下,通道维度与悬浮液的大小相当。因此,我们提出了一项协作努力,将关键实验与多尺度建模和仿真相结合,所有这些旨在了解流动条件下粒子表面相互作用的主要方面与几何限制。科学方面:颗粒的布朗游览阻碍应用,其中想要解决流体装置内特定位置的特定颗粒。这项工作中研究的聚焦方案可以用来克服这些并发症,并且可以在实验室芯片设备中广泛利用。在这种情况下,鉴于流体设备中粒子操纵领域以及表面特性的主动控制领域的粒子操纵领域的高活性,这项工作的潜在扩展是广泛的。教育和外向方面:我们项目中粒子表面相互作用引起的基本问题,以及利用分子现象对技术应用的潜在影响,将在用于本科和研究生水平课程的模块中纳入“分子模拟”和“纳尼疗法”的“分子模拟”和“界面现象”的“分子模拟”和“分子模拟”的界面。这些模块将为学生提供一个明确的例子,说明需要多学科团队,以了解纳米级科学中的复杂问题并能够解决纳米技术中的具有挑战性的问题。此外,本项目将为本科和高中生提供动手实践经验,这些学生从这两个机构提供的不同的外展和教育计划中汲取灵感。这些学生将成为一个多元化的研究人员团队的一部分,因此,将为越来越多的生物分子和化学工程跨学科领域做好准备。学生将在会议和研讨会中介绍他们的结果,并负责维护研究网页,该网页将及时介绍结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

German Drazer其他文献

German Drazer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('German Drazer', 18)}}的其他基金

Collaborative Research: Understanding the Effect of Powder Properties and Processing Conditions on the Performance of Pharmaceutical Tablets
合作研究:了解粉末特性和加工条件对药片性能的影响
  • 批准号:
    1538380
  • 财政年份:
    2015
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Effect of Transient Interfacial Dynamic in the Transport and Deposition of Particles in the Vadose Zone
合作研究:了解瞬态界面动力学对渗流区颗粒传输和沉积的影响
  • 批准号:
    1437478
  • 财政年份:
    2014
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
CAREER: Deterministic and stochastic transport of suspended particles in periodic systems: fundamentals and applications in separation sciences.
职业:周期性系统中悬浮颗粒的确定性和随机传输:分离科学的基础知识和应用。
  • 批准号:
    1339087
  • 财政年份:
    2012
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
CAREER: Deterministic and stochastic transport of suspended particles in periodic systems: fundamentals and applications in separation sciences.
职业:周期性系统中悬浮颗粒的确定性和随机传输:分离科学的基础知识和应用。
  • 批准号:
    0954840
  • 财政年份:
    2010
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
When particles should not stick: Understanding the causes for unfavorable particle deposition
当颗粒不应粘附时:了解不利颗粒沉积的原因
  • 批准号:
    0933605
  • 财政年份:
    2009
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

赤/磁铁矿与含铁硅酸盐矿物浮选分离强化基础研究
  • 批准号:
    52374262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
近生理条件下DNA分子磁性转变机制研究及磁分离技术开发
  • 批准号:
    52377228
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
功能化共价有机框架材料纳米片膜制备及其对乙烯分离研究
  • 批准号:
    22308039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相分离介导的微管精准切割机制研究
  • 批准号:
    32300582
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Mechanized Cryptographic Reasoning in Separation Logic
协作研究:SaTC:核心:小型:分离逻辑中的机械化密码推理
  • 批准号:
    2314324
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling the Initial Charge Separation Mechanism in Photosystem I: A synergistic Approach
合作研究:揭示光系统 I 中的初始电荷分离机制:一种协同方法
  • 批准号:
    2313482
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Mechanized Cryptographic Reasoning in Separation Logic
协作研究:SaTC:核心:小型:分离逻辑中的机械化密码推理
  • 批准号:
    2314323
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling the Initial Charge Separation Mechanism in Photosystem I: A Synergistic Approach
合作研究:揭示光系统 I 中的初始电荷分离机制:协同方法
  • 批准号:
    2313483
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了