Collaborative Research: CRI: IAD: Developing a Novel Infrastructure for Underwater Acoustic Sensor Networks

合作研究:CRI:IAD:开发水下声学传感器网络的新型基础设施

基本信息

  • 批准号:
    0708938
  • 负责人:
  • 金额:
    $ 7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Proposal #: CNS 07-08498 07-09946 07-08420PI(s): Preisig, James C Ye,Wei Stojanovic, MilicaLee, Freitag Heidenmann, John S.Institution: Woods Hole Oceanographic Inst U Southern California Mass Inst TechWoods Hole, MA 02543-1041 Los Angeles, CA 90089-1147 Cambridge, MA02139-4307Proposal #: CNS 07-09005 07-08938 07-08467PI(s): Cui, Jun-Hong (June) Levine, Brian; Kurose,James F. Freitag, LeeRajasekaran,Sanguthevar;Shi, Zhijie;Willett,Peter K.;Zhou,ShengliInstitution: University of Connecticut U of Massachusetts WHOIStorrs, CT 06269-1133 Amherst, MA 01003-9242 Woods Hole, MA 02543-1041Title: Collab Rsch:CRD/IAD:Open Research Testbed for Underwater Ad Hoc andSensor Networks (ORTUN)This collaborative project, developing the first open testbed infrastructure for theunderwater networking community, enables open access with the capability to conductexperiments remotely. The infrastructure, based on open research platforms, consists ofa testbed that enables wide and systematic experimental evaluation and comparison ofunderwater acoustic networks. The work, involving this rapidly deployable testbed thatcan be shared by the underwater networking community, aims to demonstrate the abilityof the facility to facilitate field experiments. The project represents a higher-levelcollaborative that arose from two collaborative groups. One group developing thefacility, the other working mainly on the experiments utilizing the facility. The testbed isexpected to be a buoy-based system that can be easily taken to different environments.When operational, these systems will be deployed 5 or 6 times a year. Theinfrastructure will consist of two types of nodes with different capabilities. The first typeof node of the rapidly deployable testbed will offer a fixed physical layer capability usingacoustic modems such as the WHOI micromodem or the ISI S-modem to implement aphysical layer with limited reconfigurability interfaced to a reconfigurable networkprocessor. This network processor will support algorithm/protocol implementation andtesting at higher network layers. The Network functions on the Fixed Physical Layertestbed will be hosted by a Gumstix processor which will then communicate withphysical layer modems such as the WHOI Micromodem or USC/ISI S-modem via aserial port. Ten to fifteen fixed physical layer nodes will be built including up to 3gateway nodes. Each gateway node of the testbed will be equipped with wireless RFcommunication enabling real-time monitoring and control of network performance. Thefixed physical layer nodes will be smaller and more easily deployed than the secondtype of node which is the all-layer node. The all-layer node is a more capable node thatwill ultimately support algorithm/protocol implementation and acoustic data collection atall networking layers. In addition to the equipment included in the fixed physical layernodes (i.e., a gumstix network processor and the ability to support relatively fixedphysical layer modems such as the WHOI Micromodem and the ISI S-modem), theall-layer nodes will also include a general purpose data acquisition system (D/A andA/D) with substantial disk storage and in-situ processing capability. The MIT r-modemsoftware will be implemented on this general purpose hardware and, along withMATLAB, will enable user implementation and testing of algorithms and the gathering ofacoustics data at the physical layer in addition to the testing at higher network layersthat it will share in common with the fixed physical layer nodes. Three to five all-layernodes will be built. The rapidly deployable testbed, using two types of nodes withvarying capabilities, should significantly enhance research at all network layers whilesetting the stage for future infrastructure improvements.Many research groups investigating fundamental questions about how to design suchnetworked systems that utilize acoustic communications in complex underwaterenvironments have had their overall effort significantly slowed by the lack of commonmeans to test and compare protocols under realistic environmental conditions. Thisinfrastructure responds to the need for consensus on analytic or simulation models forunderwater networks where researchers need the ability to gather experimental dataunder real world conditions in order to make progress.The network stack will be modular by design with sockets used to enable cross layercontrol and communication. The physical, MAC, Network and Application layers will bepopulated with sample components to enable users test their own algorithms orprotocols without having to populate the entire stack. Users will be able to write modulesto test their own algorithms or protocols at different layers and selectively replace thesample modules with their own. While the development of the modular architecture andsample modules for the network stack will be done with close coordination between allparticipating institutions, the lead institution for the layers that will be provided arePhysical Layer (MIT for the all-layer system, WHOI for the Fixed-PHY system), MACLayer (USC/ISI), Network Layer (UConn, a geo-routing protocol), and Application Layer(UMass, a DTN routine service). The open characteristic of the testbeds and theirusefulness for conducting research will be demonstrated by the members of the team(primarily UConn and UMass as described above) and a few selected outsideparticipants. In addition, acoustic receptions suitable for physical layer research will bemade available to the general research community via the Internet.Broader Impacts: This work enables the essential capability of research groups toexamine fundamental research questions and their potential solutions in the real world.The infrastructure will directly benefit many on-going research projects in this field Alarge number of potential users in the community may benefit from this testbedinfrastructure. In addition to the significant research impact, the infrastructure isexpected to make a very strong educational impact as well, supporting classes bringingremote access to field experiments to students for whom traditional experiments wouldhave been too costly. The infrastructure can accelerate research and education in theunderwater networking field.
提案编号:CNS 07-08498 07-09946 07-08420PI(s):Preisig、James C Ye、Wei Stojanovic、MilicaLee、Freitag Heidenmann、John S.机构:伍兹霍尔海洋研究所 U Southern California Mass Inst TechWoods Hole, MA 02543 -1041 加利福尼亚州洛杉矶90089-1147 Cambridge, MA02139-4307提案编号:CNS 07-09005 07-08938 07-08467PI(s):Cui, Jun-Hong (June) Levine, Brian; Kurose,James F. Freitag, LeeRajasekaran,Sanguthevar;石志杰;Willett,Peter K.;周胜利机构:康涅狄格大学马萨诸塞大学 WHOIStorrs, CT 06269-1133 Amherst, MA 01003-9242 Woods Hole, MA 02543-1041标题:合作Rsch:CRD/IAD:水下自组织和传感器网络开放研究测试台 (ORTUN) 该合作项目为水下网络社区开发第一个开放测试台基础设施,支持开放访问并具有远程进行实验的能力。该基础设施基于开放研究平台,包括一个测试台,可以对水下声学网络进行广泛、系统的实验评估和比较。这项工作涉及这个可快速部署的测试台,可供水下网络社区共享,旨在展示该设施促进现场实验的能力。该项目代表了由两个协作小组产生的更高级别的协作。一组负责开发该设施,另一组主要致力于利用该设施进行实验。该测试平台预计将是一个基于浮标的系统,可以轻松应用于不同的环境。投入运行后,这些系统每年将部署 5 到 6 次。基础设施将由具有不同功能的两种类型的节点组成。快速部署测试台的第一种类型的节点将使用诸如WHOI微调制解调器或ISI S调制解调器之类的声学调制解调器来提供固定物理层功能,以实现与可重新配置网络处理器接口的具有有限可重新配置性的物理层。该网络处理器将支持更高网络层的算法/协议实现和测试。固定物理层测试台上的网络功能将由 Gumstix 处理器托管,然后该处理器将通过串行端口与物理层调制解调器(例如 WHOI Micromodem 或 USC/ISI S-modem)进行通信。将建设10至15个固定物理层节点,其中最多3个网关节点。测试台的每个网关节点都将配备无线射频通信,从而能够实时监测和控制网络性能。固定物理层节点将比第二类全层节点更小、更容易部署。全层节点是一个功能更强大的节点,最终将支持所有网络层的算法/协议实现和声学数据收集。除了固定物理层节点中包含的设备(即,gumstix 网络处理器和支持相对固定的物理层调制解调器(如 WHOI Micromodem 和 ISI S-modem)的能力)外,全层节点还将包括通用目的具有大量磁盘存储和现场处理能力的数据采集系统(D/A 和A/D)。麻省理工学院的 r-调制解调器软件将在该通用硬件上实现,并与 MATLAB 一起,使用户能够实现和测试算法,并在物理层收集声学数据,此外还可以在更高的网络层进行测试(与其他网络层共享)固定的物理层节点。建设3~5个全层节点。可快速部署的测试台使用两种类型的具有不同功能的节点,应显着增强所有网络层的研究,同时为未来基础设施的改进奠定基础。许多研究小组研究了如何设计在复杂水下环境中利用声学通信的网络系统的基本问题。由于缺乏在现实环境条件下测试和比较协议的通用方法,他们的总体工作显着放缓。该基础设施满足了对水下网络分析或模拟模型达成共识的需求,研究人员需要能够在现实条件下收集实验数据才能取得进展。网络堆栈将采用模块化设计,并带有用于实现跨层控制和通信的套接字。物理、MAC、网络和应用层将填充示例组件,使用户能够测试自己的算法或协议,而无需填充整个堆栈。用户将能够编写模块来在不同层测试自己的算法或协议,并有选择地用自己的模块替换示例模块。虽然网络堆栈的模块化架构和示例模块的开发将在所有参与机构之间的密切协调下完成,但所提供层的牵头机构是物理层(全层系统为 MIT,固定 PHY 为 WHOI)系统)、MAC层(USC/ISI)、网络层(UConn,地理路由协议)和应用层(UMass,DTN常规服务)。测试平台的开放特性及其对进行研究的有用性将由团队成员(主要是如上所述的康涅狄格大学和麻省大学)和一些选定的外部参与者来证明。此外,适用于物理层研究的声学接收将通过互联网向一般研究界提供。更广泛的影响:这项工作使研究小组具备检查基础研究问题及其在现实世界中的潜在解决方案的基本能力。基础设施将直接使该领域许多正在进行的研究项目受益。社区中的大量潜在用户可能会从该测试床基础设施中受益。除了重大的研究影响之外,该基础设施预计还将产生非常强大的教育影响,支持课堂为那些传统实验成本太高的学生提供远程访问现场实验的机会。该基础设施可以加速水下网络领域的研究和教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Levine其他文献

Deletion variant in the ADRA2B gene increases coupling between emotional responses at encoding and later retrieval of emotional memories
ADRA2B 基因中的缺失变异增加了编码时情绪反应与随后情绪记忆检索之间的耦合
  • DOI:
    10.1016/j.nlm.2013.10.008
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    R. Todd;Daniel J. Müller;D. Palombo;Amanda Robertson;T. Eaton;Natalie Freeman;Brian Levine;Adam K. Anderson
  • 通讯作者:
    Adam K. Anderson
Situational variation in alcohol expectancies
酒精预期的情境变化
Land and Water Resourc Management in Asia Challenges for climate adaptation
亚洲的土地和水资源管理 气候适应的挑战
  • DOI:
    10.4324/9780080888019-18
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian S. Jensen;Richard T. Snodgrass;Jan Chomicki;David Toman;Bernhard Thalheim;Elena Ferrari;Athena Vakali;Evaggelia Pitoura;Gottfried Vossen;Mukesh K. Mohania;Ullas Nambiar;Michael Schrefl;M. Vincent;Mikael Berndtsson;Jonas Mellin;AnnMarie Ericsson;Kazuo Goda;Serge Abiteboul;Omar Benjelloun;Tova Milo;Nathaniel Palmer;Luciano Baresi;M. Matera;C. Taton;Noel De Palma;Sara Bouchenak;Zachary Ives;Yueqing Zhang;J. Joshi;Philippe Bonnet;Dennis Shasha;Sara Cohen;T. Tsikrika;Baihua Zheng;A. Wun;Peter Revesz;Paolo Terenziani;Peter M. D. Gray;Alin Dobra;Vassilis Plachouras;Amarnath Gupta;Xin;Lei Zhang;S. Papadimitriou;Simone Fischer;Vasilis Vassalos;Carson Kai;Denilson Barbosa;Ioana Manolescu;Jeffrey Xu Yu;David B. Lomet;Heiko Schuldt;DONG GAO;Jinyan Li;F. Banaei;C. Shahabi;Wolf Siberski;Wolfgang Nejdl;Qingju Liu;Vilém Novák;Jinze Liu;Bart Goethals;J. Cieslewicz;Kenneth A. Ross;Reagan Moore;Solmaz Kolahi;Philip S. Yu;Yun Chi;Jianfeng Pei;Ninghui Li;V. Khatri;Gerhard Weikum;Lie Lu;A. Hanjalic;Werner Kriechbaum;Brian Levine;G. Miklau;Marina Blanton;Nicolas Hervé;Nozha Boujemaa;C. Amza;Ethan Zhang;Yi Zhang;Nick Craswell;Stephen Robertson;S. Beitzel;Eric C. Jensen;Ophir Frieder
  • 通讯作者:
    Ophir Frieder
Fragmenting sleep diminishes its recuperative value.
碎片化的睡眠会降低其恢复价值。
  • DOI:
    10.1093/sleep/10.6.590
  • 发表时间:
    1987-11-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Brian Levine;T. Roehrs;E. Stepanski;F. Zorick;Thomas Roth
  • 通讯作者:
    Thomas Roth
Winning the Super “Buzz” Bowl
赢得超级“Buzz”碗
  • DOI:
    10.2501/s0021849909090424
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Caleb J. Siefert;Ravi Kothuri;D. Jacobs;Brian Levine;Joseph T. Plummer;C. Marci
  • 通讯作者:
    C. Marci

Brian Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Levine', 18)}}的其他基金

CyberCorps Scholarship for Service (Renewal): Cross Disciplinary Cybersecurity Education for a Modern Workforce
Cyber​​Corps 服务奖学金(续展):针对现代劳动力的跨学科网络安全教育
  • 批准号:
    2043084
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
SHF: Small: Formal Methods for Modern System Configuration Languages
SHF:小:现代系统配置语言的形式化方法
  • 批准号:
    1717636
  • 财政年份:
    2017
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service at the University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校 Cyber​​Corps 服务奖学金
  • 批准号:
    1565521
  • 财政年份:
    2016
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
EAGER: Privacy-Preserving Approaches to Proactive Forensics
EAGER:主动取证的隐私保护方法
  • 批准号:
    1442069
  • 财政年份:
    2014
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
TC: Small: Collaborative Research: Strengthening Forensic Science for Network Investigations
TC:小型:合作研究:加强网络调查的法医学
  • 批准号:
    1018615
  • 财政年份:
    2010
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
TC: Medium: Collaborative Research: Novel Forensic Analysis for Crimes Involving Mobile Systems
TC:媒介:协作研究:针对涉及移动系统的犯罪的新型取证分析
  • 批准号:
    0905349
  • 财政年份:
    2009
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Northeast Partnership for Developing the Information Assurance Workforce
合作研究:发展信息保障劳动力的东北合作伙伴关系
  • 批准号:
    0830876
  • 财政年份:
    2008
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NBD: Construction of Robust and Efficient Disruption Tolerant Networks
合作研究:NeTS-NBD:构建鲁棒高效的抗干扰网络
  • 批准号:
    0519881
  • 财政年份:
    2005
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
CAREER: Advances in Peer-to-Peer Networking
职业:点对点网络的进步
  • 批准号:
    0133055
  • 财政年份:
    2002
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: Anonymous Protocols
合作研究:匿名协议
  • 批准号:
    0087482
  • 财政年份:
    2001
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似国自然基金

本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
  • 批准号:
    12304019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双层CrI3二维范德华自旋电子器件自旋输运的理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维磁性半导体材料CrI3低能有效哈密顿模型构建与磁光性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
二维磁性材料CrI3、VI3及其异质结的层间磁序与拉曼光谱研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单层CrI3在衬底上生长机制和磁性调控的理论研究
  • 批准号:
    11904288
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRI: CI-SUSTAIN: Collaborative Research: CiteSeerX: Toward Sustainable Support of Scholarly Big Data
CRI:CI-SUSTAIN:协作研究:CiteSeerX:迈向学术大数据的可持续支持
  • 批准号:
    1853919
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CRI: CI-SUSTAIN: Collaborative Research: Sustaining Lemur Project Resources for the Long-Term
CRI:CI-SUSTAIN:合作研究:长期维持狐猴项目资源
  • 批准号:
    1822975
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CRI: CI-EN: Collaborative Research: An Experimental Infrastructure and a Database of Real Faults to Foster Reproducibility in Software Engineering Research
CRI:CI-EN:协作研究:实验基础设施和真实故障数据库,以促进软件工程研究的可重复性
  • 批准号:
    1823172
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
  • 批准号:
    1823246
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
  • 批准号:
    1823354
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了