Nonlinear Problems of Solid Mechanics

固体力学非线性问题

基本信息

  • 批准号:
    0708180
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Antman0708180 S. S. Antman and his coworkers treat a variety of dynamicaland steady-state nonlinear problems for deformable rods, shells,and three-dimensional solid bodies that can suffer large andrapid deformations. The bodies are composed of nonlinearlyelastic, viscoelastic, plastic, viscoplastic, or magnetoelasticmaterials. In each case, properly invariant, geometrically exacttheories encompassing general nonlinear constitutive equationsare used. The goals of these studies are to (i) discover newnonlinear effects, (ii) determine thresholds in constitutiveequations separating qualitatively different responses, (iii)determine general classes of constitutive equations that are bothphysically and mathematically natural, (iv) examine and predictimportant kinds of instabilities, (v) determine how existence,regularity, and well-posedness of solutions of the governingquasilinear systems of partial differential equations depend onmaterial behavior, (vi) contribute to the theory of shocks anddissipative mechanisms in solids, and (vii) develop new methodsof nonlinear analysis and of effective computation for problemsof solid mechanics. Antman is continuing to make carefullyformulated physical theories accessible to mathematicians, and tomake modern techniques of applicable analysis accessible toscientists and engineers, with special attention to graduatestudents. S. S. Antman and his coworkers develop powerful newmathematical methods for analyzing the large and rapiddeformations of solid bodies. This work has applications both tonew technological materials including "smart" materials and toold biological materials, such as living tissue. (Although ithas been known for 50 years how to derive the equations governingsuch deformations cleanly from first principles without ad hocapproximations, the mathematical tools for treating theseequations are only now being developed and refined.) Thespecific problems under study include (1) the deformation of thinshell-like bodies in a fluid flow, (2) the loss of stability ofsuch a shell subjected to pulsating pressures, (3) the swimmingof eels, (4) the rigorous justification of useful approximationsfor the motions of the body when the loads it bears are appliedslowly or when the loads are very large or when the body is oflight weight, (5) the buckling of shells, (6) strange effects forspinning bodies, (7) the development and the preclusion of shocks(which are large and sudden discontinuities in velocity anddeformation), and (8) the construction of effective methods ofcomputation. Antman is continuing to make carefully formulatedphysical theories accessible to mathematicians, and to makemodern techniques of applicable mathematics accessible toscientists and engineers, with special attention to graduatestudents.
Antman0708180 S. S. Antman和他的同事将可变形的杆,壳和三维固体物体治疗各种动态和稳态非线性问题,这些固体可能会遭受较大的雄激素变形。 这些身体由非线弹性,粘弹性,塑料,粘塑料或磁弹性材料组成。 在每种情况下,适当不变,几何精确的理论包括使用一般非线性本构方程。 The goals of these studies are to (i) discover newnonlinear effects, (ii) determine thresholds in constitutiveequations separating qualitatively different responses, (iii)determine general classes of constitutive equations that are bothphysically and mathematically natural, (iv) examine and predictimportant kinds of instabilities, (v) determine how existence,regularity, and well-posedness of solutions of the governingquasilinear systems of partial微分方程取决于物质行为,(vi)有助于固体中的冲击理论和解剖机制,(vii)开发非线性分析的新方法和固体力学问题的有效计算。 安特曼(Antman)正在继续使数学家可以仔细化的物理理论,并特别关注毕业生的现代分析现代技术。 S. S. Antman和他的同事开发了有力的新数学方法,用于分析固体的大型和快速变化。 这项工作具有Tonew技术材料的应用,包括“智能”材料和Toold生物材料,例如生物组织。 (尽管ITHA已知已有50年了,如何在没有临时临时的情况下从第一原理中得出统一变形,但仅开发和完善了用于治疗以下问题的数学工具。鳗鱼的游泳,(4)在载荷时,对身体运动的有用近似值进行了严格的理由。 (8)构建有效的计算方法。 安特曼(Antman)继续使数学家可以访问精心构造的身体理论,并特别关注毕业生的适用数学访问的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Antman其他文献

Stuart Antman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Antman', 18)}}的其他基金

Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    1008058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    0204505
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    9971823
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
  • 批准号:
    9623261
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Rathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学的非线性问题
  • 批准号:
    9302726
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
  • 批准号:
    9001777
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Modern Developments in Natural Philosphy - A Historical Perspective
数学科学:自然哲学现代发展会议 - 历史的视角
  • 批准号:
    8718022
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
  • 批准号:
    8503317
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
  • 批准号:
    8301129
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    8001844
  • 财政年份:
    1980
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

点传递超图的同构和连通性问题
  • 批准号:
    12301446
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
一类双色散非局部波动方程初值问题的理论研究
  • 批准号:
    12301272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
控制与优化问题的有限余维数方法
  • 批准号:
    12371444
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Foundation and Application of Generalized Mixed FEM Towards Nonlinear Problems in Solid Mechanics
固体力学非线性问题的广义混合有限元的基础及应用
  • 批准号:
    255510958
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Isogeometric and stochastic collocation methods for nonlinear probabilistic multiscale problems in solid mechanics
固体力学中非线性概率多尺度问题的等几何和随机配置方法
  • 批准号:
    255747201
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    1008058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
  • 批准号:
    0204505
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robustness Optimization Algorithm for Nonlinear Solid Mechanics Problems
非线性固体力学问题的鲁棒性优化算法
  • 批准号:
    0196081
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了