Nonlinear Problems of Solid Mechanics
固体力学非线性问题
基本信息
- 批准号:1008058
- 负责人:
- 金额:$ 38.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AntmanDMS-1008058 The investigator gives careful mathematical treatments of avariety of dynamical and steady-state nonlinear problems fordeformable rods, shells, and three-dimensional solid bodies,possibly in contact with moving fluids, variable temperaturefields, and electromagnetic fields. The bodies are composed ofnonlinearly elastic, plastic, viscoplastic, ormagneto-(visco-)elastic materials. In each case, properlyinvariant, geometrically exact theories encompassing generalnonlinear constitutive equations are used. The goals of thesestudies are to discover new nonlinear effects and new kinds ofinstabilities, determine thresholds in constitutive equationsseparating qualitatively different responses, determine generalclasses of constitutive equations that are both physically andmathematically natural, determine how existence, regularity, andwell-posedness depend on material behavior, contribute to thetheory of shocks and dissipative mechanisms in solids, anddevelop new methods of nonlinear analysis and of effectivecomputation for problems of solid mechanics. For treating the behavior of both new technologicalmaterials and old biological materials, such as living tissue,traditional theories, based on such simplifying assumptions assmall deformations and linear response, may well fail to captureimportant physical phenomena and may, in fact, give misleadinginformation. E.g., the study of a specific problem for atraditional theory may indicate that a dangerous instabilityoccurs in a solid body when an externally applied load orfrequency exceeds a certain threshold. An analysis of the sameproblem without the simplifying assumptions may well show that alarge class of materials give rise to instabilities at thresholdsmuch lower than those predicted by simplified theories. Sincecorrectly formulated exact nonlinear problems of solid mechanicsseldom can be directly subsumed under available mathematicaltheories for treating the governing equations, one purpose ofthis project is to develop new mathematical techniques to handlesuch problems. These techniques can treat whole ranges ofmaterials at one time. The results have consequences forstructures under loads (bridges, buildings, biologicalstructures), for control of "smart" structures, and formicro-electro-mechanical systems (MEMs).
Antmandms-1008058研究者对动态和稳态的非线性问题进行了仔细的数学处理,可伪造的杆,壳和三维固体,可能与移动的流体,可变温度场和电磁场接触。 这些身体由非线性弹性,塑料,粘膜,ormagneto-(visco-)弹性材料组成。 在每种情况下,都使用适当的,几何精确的理论,其中包含通用的构成方程。 The goals of thesestudies are to discover new nonlinear effects and new kinds ofinstabilities, determine thresholds in constitutive equationsseparating qualitatively different responses, determine generalclasses of constitutive equations that are both physically andmathematically natural, determine how existence, regularity, andwell-posedness depend on material behavior, contribute to thetheory of shocks and dissipative mechanisms in solids, anddevelop new methods of非线性分析和固体力学问题的有效计算。 为了治疗新技术材料和旧生物学材料的行为,例如生物组织,传统理论,基于这种简化的假设和线性响应,很可能无法捕获重要的物理现象,实际上,实际上可能会产生误导性信息。 例如,对临界理论的特定问题的研究可能表明,当外部施加的载荷频率超过一定阈值时,固体体内的危险不稳定。 在没有简化假设的情况下对同一问题进行的分析可能表明,材料类别的材料类别在阈值下引起的不稳定性低于简化理论所预测的材料。 可以直接将固体力学的确切非线性问题直接包含在可用的数学理论中,以处理管理方程,这是一个项目的一个目的是开发新的数学技术来处理问题。 这些技术可以一次处理整个材料。 结果在负载(桥梁,建筑物,生物结构)下具有后果的堡垒,以控制“智能”结构和emicro-Electro机械系统(MEMS)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Stuart Antman的其他基金
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:07081800708180
- 财政年份:2007
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:02045050204505
- 财政年份:2002
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:99718239971823
- 财政年份:1999
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
- 批准号:96232619623261
- 财政年份:1996
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Rathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学的非线性问题
- 批准号:93027269302726
- 财政年份:1993
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
- 批准号:90017779001777
- 财政年份:1990
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Conference on Modern Developments in Natural Philosphy - A Historical Perspective
数学科学:自然哲学现代发展会议 - 历史的视角
- 批准号:87180228718022
- 财政年份:1988
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
- 批准号:85033178503317
- 财政年份:1985
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Nonlinear Problems of Solid Mechanics
数学科学:固体力学非线性问题
- 批准号:83011298301129
- 财政年份:1983
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Standard GrantStandard Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:80018448001844
- 财政年份:1980
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
基于连续张量表示的高维数据复原问题研究
- 批准号:12371456
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性耦合问题的各向异性高精度有限元方法新模式研究
- 批准号:12301474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钛合金中氢化钛析出机制及氢脆问题的原子尺度研究
- 批准号:52301007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期钡暴露与儿童内外化行为问题变化轨迹的出生队列研究及其胎盘氧化应激介导OCTN2基因启动子甲基化的作用
- 批准号:82304167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
张量数据稳健估计和假设检验中的若干问题
- 批准号:12371288
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Foundation and Application of Generalized Mixed FEM Towards Nonlinear Problems in Solid Mechanics
固体力学非线性问题的广义混合有限元的基础及应用
- 批准号:255510958255510958
- 财政年份:2014
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Priority ProgrammesPriority Programmes
Isogeometric and stochastic collocation methods for nonlinear probabilistic multiscale problems in solid mechanics
固体力学中非线性概率多尺度问题的等几何和随机配置方法
- 批准号:255747201255747201
- 财政年份:2014
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Priority ProgrammesPriority Programmes
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:07081800708180
- 财政年份:2007
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Nonlinear Problems of Solid Mechanics
固体力学非线性问题
- 批准号:02045050204505
- 财政年份:2002
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant
Robustness Optimization Algorithm for Nonlinear Solid Mechanics Problems
非线性固体力学问题的鲁棒性优化算法
- 批准号:01960810196081
- 财政年份:2000
- 资助金额:$ 38.3万$ 38.3万
- 项目类别:Continuing GrantContinuing Grant