Collaborative Research: Optimal Design of Experiments for Categorical Data
协作研究:分类数据实验的优化设计
基本信息
- 批准号:0707013
- 负责人:
- 金额:$ 14.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators develop methods for identifying optimal and efficient designs for experiments with categorical data. The project consists of three main parts. (i) Identification of optimal designs for binary data under generalized linear regression models. This part includes consideration of models in which slope and intercept parameters can vary for different groups of subjects and models with a random subject effect. (ii) Identification of optimal allocations of treatments to blocks for comparative studies with binary data. A logistic model is a popular choice for such studies. (iii) Identification of optimal designs for count data under loglinear regression models. In this setting, the investigators focus also on optimal designs for models that can account for subject heterogeneity. This project is innovative in that it uses a new technique that has vast advantages over the commonly used geometric approach. Categorical responses are very common in designed experiments in many scientific studies, such as drug discovery, clinical trials, social sciences, marketing, etc. Generalized Linear Models (GLMs) are widely used for modeling such data. Using efficient designs for collecting data in such experiments is critically important. It can reduce the sample size needed for achieving a specified precision, thereby reducing the cost, or improve the precision of estimates for a specified sample size. While research on optimal designs for linear models has been systematically developed over more than 30 years, there are very few research publications on optimal designs for GLMs. This project is important both for the introduction of novel theoretical tools and for its impact on applications. For example, the results of the project significantly reduce the time, money, and the number of patients needed in clinical trials, as well as other scientific studies. The results can help the U.S. Food and Drug Administration to improve its guidelines for clinical trials.
研究人员开发了识别具有分类数据实验的最佳和高效设计的方法。该项目由三个主要部分组成。 (i)在广义线性回归模型下识别二进制数据的最佳设计。该部分包括考虑模型的考虑,其中斜率和截距参数可能会因随机受试者效应而不同。 (ii)用二进制数据鉴定对比较研究的最佳治疗分配。逻辑模型是此类研究的流行选择。 (iii)在loglinear回归模型下识别计数数据的最佳设计。在这种情况下,调查人员还专注于可以解释主题异质性的模型的最佳设计。该项目具有创新性,因为它使用了一种与常用几何方法相比具有巨大优势的新技术。在许多科学研究的设计实验中,分类反应非常普遍,例如药物发现,临床试验,社会科学,市场营销等。广义线性模型(GLM)广泛用于建模此类数据。在此类实验中使用有效的设计收集数据至关重要。它可以减少实现指定精度所需的样本量,从而降低成本,或提高指定样本量的估计精度。虽然在30多年来系统地开发了对线性模型最佳设计的研究,但关于GLM的最佳设计的研究出版物很少。该项目对于引入新型理论工具及其对应用的影响都很重要。例如,该项目的结果大大减少了临床试验中的时间,金钱以及所需的患者数量以及其他科学研究。结果可以帮助美国食品药品监督管理局改善其临床试验准则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Yang其他文献
Comparative Analysis of Microbial and Rat Metabolism of the Total Saponins from Panax notoginseng by HPLC-ESI-MS/MS
HPLC-ESI-MS/MS 比较分析三七总皂苷的微生物和大鼠代谢
- DOI:
10.1177/1934578x0800300502 - 发表时间:
2008 - 期刊:
- 影响因子:1.8
- 作者:
Guangtong Chen;Min Yang;Si;Zhi‐qiang Lu;Jin;Hui;Li‐jun Wu;D. Guo - 通讯作者:
D. Guo
Parasitic modulation of electromagnetic signals caused by time-varying plasma
时变等离子体引起的电磁信号的寄生调制
- DOI:
10.1063/1.4907904 - 发表时间:
2015-02 - 期刊:
- 影响因子:2.2
- 作者:
Min Yang;Xiaoping Li;Kai Xie;Yanming Liu - 通讯作者:
Yanming Liu
Detecting cadmium contamination in loessal soils using near-infrared spectroscopy in the Xiaoqinling gold area
小秦岭金矿区黄土土壤镉污染的近红外光谱检测
- DOI:
10.1177/0958305x211030114 - 发表时间:
2021-09 - 期刊:
- 影响因子:0
- 作者:
Min Yang;Youning Xu;Haixing Shang;Abdullah Abdullah;Wen Zhang - 通讯作者:
Wen Zhang
Fabrication and characterization of covalently attached multilayer films containing iron phthalocyanine and diazo-resins
含有铁酞菁和重氮树脂的共价连接多层膜的制备和表征
- DOI:
10.1039/b311153a - 发表时间:
2004-02 - 期刊:
- 影响因子:0
- 作者:
Shuang Zhao;Xiaofang Li;Min Yang;Changqing Sun* - 通讯作者:
Changqing Sun*
Arvensic acids K and L, components of resin glycoside fraction from Convolvulus arvensis
Arvensic Acids K 和 L,旋花树树脂糖苷部分的成分
- DOI:
10.1080/14786419.2019.1672069 - 发表时间:
2019-10 - 期刊:
- 影响因子:2.2
- 作者:
Yun Lu;Ye He;Min Yang;Bo-Yi Fan - 通讯作者:
Bo-Yi Fan
Min Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Yang', 18)}}的其他基金
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210546 - 财政年份:2022
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
- 批准号:
1811291 - 财政年份:2018
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
- 批准号:
1407518 - 财政年份:2014
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
Synthesis of glycosyl-novobiocins: probes of Hsp90 C-terminal affinity binding and novel anti-cancer drugs
糖基新生霉素的合成:Hsp90 C 端亲和结合探针和新型抗癌药物
- 批准号:
EP/K023071/1 - 财政年份:2013
- 资助金额:
$ 14.43万 - 项目类别:
Research Grant
CAREER: Optimal Design of Experiments for Generalized Linear Models
职业:广义线性模型实验的优化设计
- 批准号:
1322797 - 财政年份:2012
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
CAREER: Optimal Design of Experiments for Generalized Linear Models
职业:广义线性模型实验的优化设计
- 批准号:
0748409 - 财政年份:2008
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
Crossover Designs for Comparing Test Treatments with a Control Treatment: Optimality, Efficiency, and Robustness
用于比较测试处理与控制处理的交叉设计:最优性、效率和稳健性
- 批准号:
0600943 - 财政年份:2005
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Crossover Designs for Comparing Test Treatments with a Control Treatment: Optimality, Efficiency, and Robustness
用于比较测试处理与控制处理的交叉设计:最优性、效率和稳健性
- 批准号:
0304661 - 财政年份:2003
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
相似国自然基金
基于情境最佳化的模型预测控制方法研究
- 批准号:62303416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果学习的脓毒症最佳治疗策略与效应估计关键技术研究
- 批准号:62371438
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Camassa-Holm方程和短脉冲型方程的最佳适定性与爆破现象研究
- 批准号:12301298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光域正交基分解的微波光子宽带矢量信号最佳接收方法研究
- 批准号:62305266
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线性正则变换域致密气储层的地震信号最佳时频表征及预测研究
- 批准号:42204116
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant