Topology-based Methods for Analysis and Visualization of Noisy Data
基于拓扑的噪声数据分析和可视化方法
基本信息
- 批准号:0702817
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology-based Methods for Analysis and Visualization of Noisy DataPrincipal Investigator: Bernd Hamann, University of California, DavisAbstractThe size of scientific data sets that are generated by evolving supercomputers, large sensor networks, and high-resolution imaging devices is increasing rapidly, at an exponential rate. This project addresses the need for more effective data analysis methods. It develops technologies concerned with the analysis and representation of very large scientific data sets, emphasizing concepts that capture qualitative characteristics. In light of the limitations of purely visualization-based approaches applied to "raw" scientific data sets directly, this project aims at devising new concepts for visualizing very large and complex data sets. The methods being developed first extract meaningful qualitative information from a given data set, which is then used to present the higher-level information content of the data set in a significantly more compact form, thus stressing relevant qualitative behavior.The project builds on concepts from classical topology and geometry, which have contributed substantially to the development of the relatively new fields of computational topology and computational geometry. These two fields hold great potential for substantially advancing the visualization technology for understanding extremely large, complicated data sets. This projects adapts (and generalizes) computational topology and computational geometry algorithms that are well-established for smooth mathematical functions to real-world, finite-sample data sets, i.e., functions sampled at a finite number of points (that could possibly be connected by a mesh). Real-world data sets are noisy, which further complicates the application of topological methods that were developed originally for smooth functions. This project investigates the generalization of techniques based on Morse and Morse-Smale theory (studying critical-point behavior and drawing qualitative conclusions about functions) to discretized scalar fields that change over time and also contain noise.
基于拓扑的方法,用于分析和可视化噪声数据的研究者:加利福尼亚大学伯恩德·哈曼(Bernd Hamann速度。该项目解决了对更有效的数据分析方法的需求。它开发了与非常大的科学数据集的分析和表示有关的技术,强调捕获定性特征的概念。鉴于直接应用于“原始”科学数据集的纯粹基于可视化的方法的局限性,该项目旨在设计新的概念来可视化非常大而复杂的数据集。开发的方法首先从给定的数据集中提取有意义的定性信息,然后将其用来以更紧凑的形式出现数据集的高级信息内容,从而强调相关的定性行为。该项目基于概念。古典拓扑和几何形状,为相对较新的计算拓扑和计算几何学领域的发展做出了重大贡献。这两个领域具有很大的潜力,可以实质上推进可视化技术,以理解极其大,复杂的数据集。该项目适应(并概括)计算拓扑和计算几何算法,这些算法符合现实世界,有限样本数据集,即以有限数量采样的函数(可以通过有限的点来连接)网格)。现实世界中的数据集很嘈杂,这进一步使最初用于平滑功能开发的拓扑方法的应用变得复杂。该项目研究了基于Morse和Morse-Male理论(研究临界点行为并得出有关功能的定性结论)的技术的概括,以随着时间的流逝而变化并包含噪声。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Hamann其他文献
RADPLEURA: A RADIOMICS-BASED FRAMEWORK FOR LUNG PLEURA CLASSIFICATION IN HISTOLOGY IMAGES FROM INTERSTITIAL LUNG DISEASES
RADPLEURA:基于放射组学的间质性肺疾病组织学图像中肺胸膜分类框架
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
O. C. Linares;Ivar Vargas Belizario;S. Batah;Bernd Hamann;Alexandre Todorovic;P.M. Azevedo;Agma J. M. Traina - 通讯作者:
Agma J. M. Traina
Phylo-VISTA: An interactive visualization tool for multiple DNA sequence alignments - eScholarship
Phylo-VISTA:用于多个 DNA 序列比对的交互式可视化工具 - eScholarship
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Nameeta Shah;O. Couronne;Len A. Pennacchio;Michael Brudno;S. Batzoglou;E. .. Bethel;Edward M. Rubin;Bernd Hamann;Inna Dubchak - 通讯作者:
Inna Dubchak
Visualizing White Matter Fiber Tracts with Optimally Fitted Curved Dissection Surfaces
通过最佳拟合的弯曲解剖表面可视化白质纤维束
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Schurade;M. Hlawitschka;Bernd Hamann;G. Scheuermann;Thomas R. Knösche;Alfred Anwander - 通讯作者:
Alfred Anwander
Bernd Hamann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Hamann', 18)}}的其他基金
WORKSHOP: Lake Tahoe Workshop on Hierarchical Visualization Methods - Oct. 15-17, 2000
研讨会:太浩湖分层可视化方法研讨会 - 2000 年 10 月 15-17 日
- 批准号:
0084843 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Multiresolution- and Topology-Based Visualization of Large Scientific Data Sets in Parallel and Distributed Computing Environments
并行和分布式计算环境中大型科学数据集的多分辨率和基于拓扑的可视化
- 批准号:
9982251 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Career: A Proposal Regarding the Unification of Data Reduction and Multiresolution Methods for Use in Scientific Visualization and the Education in Scientific Visualization
职业:关于科学可视化中使用的数据缩减和多分辨率方法的统一以及科学可视化教育的提案
- 批准号:
9624034 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
RIA: Data Reduction and New Visualization Techniques for Three-Dimensional Data Sets
RIA:三维数据集的数据缩减和新可视化技术
- 批准号:
9696024 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
RIA: Data Reduction and New Visualization Techniques for Three-Dimensional Data Sets
RIA:三维数据集的数据缩减和新可视化技术
- 批准号:
9210439 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
- 批准号:12301447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于拓扑结构自学习张量分解的多时相遥感图像去云方法
- 批准号:62301456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于特征拓扑结构优化和特征融合的大视距位姿测量新方法及关键技术研究
- 批准号:62361039
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于等效静态转化法的薄壁结构大变形碰撞拓扑优化方法研究
- 批准号:52165027
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884760 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Artificial intelligence enhanced cancer cell classification based organelle morphology and topology
人工智能增强基于细胞器形态和拓扑的癌细胞分类
- 批准号:
10528867 - 财政年份:2022
- 资助金额:
-- - 项目类别:
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10446127 - 财政年份:2022
- 资助金额:
-- - 项目类别:
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884759 - 财政年份:2022
- 资助金额:
-- - 项目类别: