Artificial intelligence enhanced cancer cell classification based organelle morphology and topology
人工智能增强基于细胞器形态和拓扑的癌细胞分类
基本信息
- 批准号:10528867
- 负责人:
- 金额:$ 23.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsArtificial IntelligenceBiologyBrainBreast Cancer CellBreast Cancer ModelBreast Cancer cell lineCancer BiologyCell Culture TechniquesCell LineCellsCellular biologyClassificationComputer softwareConsumptionCytometryDataDevelopmentDiscriminant AnalysisDiseaseDisseminated Malignant NeoplasmGenomicsHeterogeneityHumanImageIn VitroIndividualInformaticsLocationLungMDA MB 231Machine LearningMalignant NeoplasmsMeasuresMetastatic breast cancerMethodologyMethodsMorphologyNeoplasm MetastasisNeural Network SimulationOrganOrganellesPatientsPerformancePhenotypePopulationPrimary NeoplasmProteomicsResearch PersonnelSamplingSpatial DistributionSupervisionSystemTimeTissuesVisualanalysis pipelineanticancer researchartificial intelligence algorithmbasecancer cellcancer sitecancer typeclassification algorithmconvolutional neural networkdeep learningdeep learning algorithmdeep learning modeldiagnostic valuefeature extractioninnovationlearning networklearning strategymachine learning algorithmmachine learning modelmachine learning pipelinemalignant breast neoplasmmicroscopic imagingmultiplexed imagingneoplastic cellnovelprognostic valueprotein biomarkersrandom forestsuccesssupervised learningtooltranscriptomicstumortumor xenograft
项目摘要
ABSTRACT
Breast cancer is a highly heterogenous disease, both phenotypically and genetically. The quantity and
subcellular location of cancer protein biomarkers are used to classify breast cancer types. Transcriptomics,
multiplexed imaging, or mass cytometry have been used to classify breast tumor cell heterogeneity with varying
success. Although genomics and proteomics have been successful in the identification of tumor cell populations
involved in metastatic progression, the ability to determine whether patient tumors contain metastatic
subpopulations is still lacking. Recently, organelle morphology and function has been used as a direct readout
of the functional phenotypic state of an individual cancer cell. We propose to use the spatial context of organelles,
specifically their subcellular location and inter-organelle relationships (topology), to classify novel and distinct
metastatic cancer cell subpopulations. We developed an Organelle Topology-based Cell Classification Pipeline
(OTCCP) to quantify, for the first time, the topological features of subcellular organelles, defined as the distance
between each organelle object and all its neighbors within a cell. Under RFA-CA-21-013 (Development of
Innovative Informatics Methods and Algorithms for Cancer Research and Management), we will adapt or develop
Machine learning and Deep Learning methodologies to accelerate and automate OTCCP-based organelle-
based topology cancer cell classification to identify subpopulations of metastatic cells within heterogeneous
primary tumors with potential diagnostic and prognostic value. This approach will also have major impact as a
discovery tool to advance our understanding of cancer cell biology on a subcellular level.
抽象的
乳腺癌是一种在表型和遗传上都具有高度异质性的疾病。数量及
癌症蛋白生物标志物的亚细胞定位用于对乳腺癌类型进行分类。转录组学,
多重成像或质谱流式细胞仪已用于对乳腺肿瘤细胞异质性进行分类
成功。尽管基因组学和蛋白质组学已成功鉴定肿瘤细胞群
参与转移进展,确定患者肿瘤是否含有转移性肿瘤的能力
亚人群仍然缺乏。最近,细胞器形态和功能已被用作直接读数
单个癌细胞的功能表型状态。我们建议利用细胞器的空间背景,
特别是它们的亚细胞位置和细胞器间关系(拓扑),以对新颖和独特的进行分类
转移性癌细胞亚群。我们开发了基于细胞器拓扑的细胞分类流程
(OTCCP)首次量化亚细胞器的拓扑特征,定义为距离
细胞内每个细胞器对象与其所有邻居之间的关系。根据 RFA-CA-21-013(开发
用于癌症研究和管理的创新信息学方法和算法),我们将适应或开发
机器学习和深度学习方法可加速和自动化基于 OTCCP 的细胞器
基于拓扑癌细胞分类来识别异质内转移细胞的亚群
原发性肿瘤具有潜在的诊断和预后价值。这种方法也将产生重大影响
促进我们在亚细胞水平上理解癌细胞生物学的发现工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margarida Barroso其他文献
Margarida Barroso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margarida Barroso', 18)}}的其他基金
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884759 - 财政年份:2022
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10474962 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10328547 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10277118 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10621919 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10547808 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10083202 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Photon-counting X-ray and Optical Tomography for Preclinical Cancer Research
用于临床前癌症研究的光子计数 X 射线和光学断层扫描
- 批准号:
10247629 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Photon-counting X-ray and Optical Tomography for Preclinical Cancer Research
用于临床前癌症研究的光子计数 X 射线和光学断层扫描
- 批准号:
10017171 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别: