Problems in The Theory of Automorphic Forms and L-functions

自守形式和L-函数理论中的问题

基本信息

  • 批准号:
    0700280
  • 负责人:
  • 金额:
    $ 41.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Taking the lead from the recent progress in Langlands program, the investigator proposes a number of projects, both towards making new progress on functoriality as well as benefiting from what is available. The first includes a study of Langlands "Beyond Endoscopy" by means of both regular and relative trace formulas as well as the possibility of using other Poincar\'e series besides Eisenstein series on infinite dimensional groups with the hope of capturing the new adjoint actions that happen in the dual setting, since it now appears that Eisenstein series on these groups do not lead to any new L-functions. The second set of projects includes establishing the strong transfer from general spin groups as well as the transfer from quasisplit special orthogonal groups to GL(n); special value results for L-functions by means of Harder-Mahnkopf periods through functoriality as well as an attempt in using the Langlands-Shahidi method to obtain such results via certain ideas of Harder; a general theory of Bessel functions dictated by the investigator's work on local coefficients with an eye on proving stability for root numbers of symmetric and exterior square L-functions of GL(n), among others, as well as equality of root numbers obtained from different methods. Finally the investigator will study the singular residues of certain local intertwining operators hoping to interpret them as certain weighted orbital integrals, as well as other problems in representation theory of local groups and Lfunctions. Most of these projects are joint with other mathematicians.Langlands Program is a vast collection of problems and conjectures which connects objects of arithmetic or geometric nature to those of analytic character. Such reciprocities are usually called "Functoriality". One example of this appeared in a fundamental way in the celebrated proof of Fermat's Last Theorem by Wiles. Throughout his career the investigator has developed a theory usually called the Langlands-Shahidi method, which through collaboration with a number of mathematicians, has recently led to a number of new and surprising cases of functoriality with consequences such as new bounds on eigenvalues of Laplacian on certain hyperbolic Riemann surfaces. The present proposal suggests a number of problems to try to extend functoriality to a larger class of cases as well as using them to establish new results in number theory and group representations. Among them is understanding the transcendental nature of values of L-functions, generalizations of Riemann zeta functions, at certain integers and half-integers, in line with integral values of the latter, as well as analyzing other analytic objects of arithmetic significance. The proposal involves training of graduate students and postdocs and collaboration with younger investigators.
研究人员提出了许多项目,既可以从兰兰兹计划的最新进展中获得领先,既要在功能上取得新的进展,又要从可用的项目中受益。首先包括通过常规和相对痕量公式对Langlands进行“超越内窥镜检查”的研究,以及除了Eisenstein系列无限尺寸群体外,还可以使用其他Poincar \'E系列,希望捕获双重设置中发生的新邻接动作,因为现在似乎在这些团体上对这些新组都没有任何新的l-function。第二组项目包括从一般自旋组以及从Quasisplit特殊正交组转移到GL(n)的强大转移;通过功能性的较难时期,通过较难的mahnkopf时期以及尝试使用Langlands-Shahidi方法来通过某些更难的某些想法来获得此类结果的特殊价值结果;贝塞尔功能的一般理论由研究者在局部系数上的工作决定,目的是证明gl(n)等对称和外部平方l功能的根数,以及从不同方法获得的根数等等。最终,研究者将研究某些局部相互交织的操作员的奇异残基,希望将其解释为某些加权轨道积分,以及当地群体和LFunctions的表示理论中的其他问题。这些项目中的大多数是与其他数学家的联合。Langlands计划是大量问题和猜想,将算术或几何性质与分析性质的对象联系起来。这种互惠通常称为“功能性”。一个例子以一种基本的方式出现在著名的fermat撰写的威尔斯定理的证据中。在他的整个职业生涯中,调查员开发了一种通常称为Langlands-Shahidi方法的理论,该理论通过与许多数学家的合作,最近导致了许多新的和令人惊讶的功能性案例,以及诸如Laplacian在某些多重物质Riemann表面上的新界限。本提案提出了许多问题,以尝试将功能性扩展到较大类别的案例,并使用它们来建立数字理论和小组表示的新结果。其中包括了解L功能值的先验性质,在某些整数和半智商处的Riemann Zeta函数的概括,符合后者的积分值,并分析其他具有算术意义的分析对象。该提案涉及培训研究生和博士后,以及与年轻调查员的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Freydoon Shahidi其他文献

Freydoon Shahidi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Freydoon Shahidi', 18)}}的其他基金

L-functions, Fourier Transforms, and Gamma Factors
L 函数、傅立叶变换和伽玛因子
  • 批准号:
    1801273
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Langlands Reciprocity and Automorphic Forms
朗兰兹互易和自守形式
  • 批准号:
    1500759
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Langlands Correspondence, L-functions and Automorphic Forms
朗兰兹对应、L 函数和自守形式
  • 批准号:
    1162299
  • 财政年份:
    2012
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Conference on Automorphic Forms and the Trace Formula; October 13-16, 2004; Toronto, Canada
自守形式和迹公式会议;
  • 批准号:
    0405874
  • 财政年份:
    2004
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Automorphic L-Functions and Langlands Functoriality
自同构 L 函数和朗兰兹函数性
  • 批准号:
    0200325
  • 财政年份:
    2002
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Special Semester Program on Automorphic Forms, Shimura Varieties and L-functions; January 1-May 31, 2003, Fields Institute, Toronto, Canada
自守形式、志村簇和 L 函数特别学期课程;
  • 批准号:
    0211133
  • 财政年份:
    2002
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
  • 批准号:
    0071404
  • 财政年份:
    2000
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Automorphic L-Functions, Endoscopy, and Representation Theory
自同构 L 函数、内窥镜检查和表示理论
  • 批准号:
    9970156
  • 财政年份:
    1999
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
  • 批准号:
    9622585
  • 财政年份:
    1996
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Automorphic L-Functions and the Theory of Endoscopy
数学科学:自同构 L 函数和内窥镜理论
  • 批准号:
    9301040
  • 财政年份:
    1993
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
  • 批准号:
    52306105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
  • 批准号:
    62371081
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
一类双色散非局部波动方程初值问题的理论研究
  • 批准号:
    12301272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Enumerative Geometry Related to String Theory and Their Relations to Automorphic Forms
与弦理论相关的枚举几何问题及其与自守形式的关系
  • 批准号:
    13640017
  • 财政年份:
    2001
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems in Analytic Theory of L-functions and Automorphic Forms
L-函数和自同构形式的解析理论问题
  • 批准号:
    9700488
  • 财政年份:
    1997
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Problems in the Spectral Theory of Automorphic Forms and Number Theory
自守形式谱论和数论中的问题
  • 批准号:
    9600111
  • 财政年份:
    1996
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: L-functions, Exponential Sums, and Applications of Automorphic Theory to Diophantine Problems
数学科学:L 函数、指数和以及自守理论在丢番图问题中的应用
  • 批准号:
    9202022
  • 财政年份:
    1992
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
SCATTERING THEORY WITH APPLICATIONS TO ACOUSTIC PROBLEMS AND AUTOMORPHIC FUNCTIONS
散射理论及其在声学问题和自同构函数中的应用
  • 批准号:
    7508308
  • 财政年份:
    1975
  • 资助金额:
    $ 41.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了