Problems in The Theory of Automorphic Forms and L-functions

自守形式和L-函数理论中的问题

基本信息

  • 批准号:
    0700280
  • 负责人:
  • 金额:
    $ 41.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Taking the lead from the recent progress in Langlands program, the investigator proposes a number of projects, both towards making new progress on functoriality as well as benefiting from what is available. The first includes a study of Langlands "Beyond Endoscopy" by means of both regular and relative trace formulas as well as the possibility of using other Poincar\'e series besides Eisenstein series on infinite dimensional groups with the hope of capturing the new adjoint actions that happen in the dual setting, since it now appears that Eisenstein series on these groups do not lead to any new L-functions. The second set of projects includes establishing the strong transfer from general spin groups as well as the transfer from quasisplit special orthogonal groups to GL(n); special value results for L-functions by means of Harder-Mahnkopf periods through functoriality as well as an attempt in using the Langlands-Shahidi method to obtain such results via certain ideas of Harder; a general theory of Bessel functions dictated by the investigator's work on local coefficients with an eye on proving stability for root numbers of symmetric and exterior square L-functions of GL(n), among others, as well as equality of root numbers obtained from different methods. Finally the investigator will study the singular residues of certain local intertwining operators hoping to interpret them as certain weighted orbital integrals, as well as other problems in representation theory of local groups and Lfunctions. Most of these projects are joint with other mathematicians.Langlands Program is a vast collection of problems and conjectures which connects objects of arithmetic or geometric nature to those of analytic character. Such reciprocities are usually called "Functoriality". One example of this appeared in a fundamental way in the celebrated proof of Fermat's Last Theorem by Wiles. Throughout his career the investigator has developed a theory usually called the Langlands-Shahidi method, which through collaboration with a number of mathematicians, has recently led to a number of new and surprising cases of functoriality with consequences such as new bounds on eigenvalues of Laplacian on certain hyperbolic Riemann surfaces. The present proposal suggests a number of problems to try to extend functoriality to a larger class of cases as well as using them to establish new results in number theory and group representations. Among them is understanding the transcendental nature of values of L-functions, generalizations of Riemann zeta functions, at certain integers and half-integers, in line with integral values of the latter, as well as analyzing other analytic objects of arithmetic significance. The proposal involves training of graduate students and postdocs and collaboration with younger investigators.
以朗兰兹计划最近取得的进展为引领,研究者提出了一系列项目,既要在功能性方面取得新的进展,又要从现有的项目中受益。第一个包括通过正则和相对迹公式对朗兰兹“超越内窥镜”的研究,以及在无限维群上使用除爱森斯坦级数之外的其他庞加莱级数的可能性,以期捕获新的伴随动作发生在对偶设置中,因为现在看来这些群的爱森斯坦级数不会导致任何新的 L 函数。第二组项目包括建立从一般自旋群的强转移以及从准分裂特殊正交群到GL(n)的转移;通过函子性的 Harder-Mahhnkopf 周期得出 L 函数的特殊值结果,以及尝试使用 Langlands-Shahidi 方法通过 Harder 的某些想法获得此类结果;贝塞尔函数的一般理论,由研究者对局部系数的研究决定,着眼于证明 GL(n) 的对称和外部平方 L 函数的根数的稳定性等,以及从不同的方法获得的根数的相等性方法。最后,研究者将研究某些局部交织算子的奇异留数,希望将它们解释为某些加权轨道积分,以及局部群和 L 函数表示论中的其他问题。这些项目大多数是与其他数学家联合进行的。朗兰兹纲领是大量问题和猜想的集合,它将算术或几何性质的对象与分析特征的对象联系起来。这种互惠性通常称为“函数性”。怀尔斯著名的费马大定理证明中就以根本性的方式出现了这样的一个例子。在他的整个职业生涯中,研究者开发了一种通常称为 Langlands-Shahidi 方法的理论,通过与许多数学家的合作,该理论最近导致了许多新的和令人惊讶的函子性案例,其后果包括拉普拉斯算子特征值的新界限某些双曲黎曼曲面。目前的提案提出了一些问题,试图将函子性扩展到更大的案例类别,并使用它们在数论和群表示中建立新的结果。其中包括理解 L 函数值的超越性质、黎曼 zeta 函数在某些整数和半整数上的推广,与后者的整数值一致,以及分析其他具有算术意义的分析对象。该提案涉及研究生和博士后的培训以及与年轻研究人员的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Freydoon Shahidi其他文献

Freydoon Shahidi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Freydoon Shahidi', 18)}}的其他基金

L-functions, Fourier Transforms, and Gamma Factors
L 函数、傅立叶变换和伽玛因子
  • 批准号:
    1801273
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Langlands Reciprocity and Automorphic Forms
朗兰兹互易和自守形式
  • 批准号:
    1500759
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Langlands Correspondence, L-functions and Automorphic Forms
朗兰兹对应、L 函数和自守形式
  • 批准号:
    1162299
  • 财政年份:
    2012
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Conference on Automorphic Forms and the Trace Formula; October 13-16, 2004; Toronto, Canada
自守形式和迹公式会议;
  • 批准号:
    0405874
  • 财政年份:
    2004
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Automorphic L-Functions and Langlands Functoriality
自同构 L 函数和朗兰兹函数性
  • 批准号:
    0200325
  • 财政年份:
    2002
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Special Semester Program on Automorphic Forms, Shimura Varieties and L-functions; January 1-May 31, 2003, Fields Institute, Toronto, Canada
自守形式、志村簇和 L 函数特别学期课程;
  • 批准号:
    0211133
  • 财政年份:
    2002
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
  • 批准号:
    0071404
  • 财政年份:
    2000
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Automorphic L-Functions, Endoscopy, and Representation Theory
自同构 L 函数、内窥镜检查和表示理论
  • 批准号:
    9970156
  • 财政年份:
    1999
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
  • 批准号:
    9622585
  • 财政年份:
    1996
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Automorphic L-Functions and the Theory of Endoscopy
数学科学:自同构 L 函数和内窥镜理论
  • 批准号:
    9301040
  • 财政年份:
    1993
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant

相似国自然基金

代数迹函数、素数与自守形式的解析理论
  • 批准号:
    11971370
  • 批准年份:
    2019
  • 资助金额:
    15 万元
  • 项目类别:
    国际(地区)合作与交流项目
关于高阶自守形式情形的Möbius正交性猜想及其在L-函数理论中的应用
  • 批准号:
    11801318
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
四元数值泛函微分方程的若干定性研究
  • 批准号:
    11861072
  • 批准年份:
    2018
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
自守形式解析理论中的若干问题
  • 批准号:
    11771252
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
自守形式理论在解析数论中的应用研究
  • 批准号:
    11771256
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Enumerative Geometry Related to String Theory and Their Relations to Automorphic Forms
与弦理论相关的枚举几何问题及其与自守形式的关系
  • 批准号:
    13640017
  • 财政年份:
    2001
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems in Analytic Theory of L-functions and Automorphic Forms
L-函数和自同构形式的解析理论问题
  • 批准号:
    9700488
  • 财政年份:
    1997
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Problems in the Spectral Theory of Automorphic Forms and Number Theory
自守形式谱论和数论中的问题
  • 批准号:
    9600111
  • 财政年份:
    1996
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: L-functions, Exponential Sums, and Applications of Automorphic Theory to Diophantine Problems
数学科学:L 函数、指数和以及自守理论在丢番图问题中的应用
  • 批准号:
    9202022
  • 财政年份:
    1992
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
SCATTERING THEORY WITH APPLICATIONS TO ACOUSTIC PROBLEMS AND AUTOMORPHIC FUNCTIONS
散射理论及其在声学问题和自同构函数中的应用
  • 批准号:
    7508308
  • 财政年份:
    1975
  • 资助金额:
    $ 41.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了