Mathematical Sciences: Automorphic L-Functions and the Theory of Endoscopy

数学科学:自同构 L 函数和内窥镜理论

基本信息

  • 批准号:
    9301040
  • 负责人:
  • 金额:
    $ 6.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-06-01 至 1996-11-30
  • 项目状态:
    已结题

项目摘要

This grant supports work by Professor Shahidi in the theory of automorphic forms and representation theory. The investigator will study the non-discrete tempered spetrum of classical groups over local fields by means of the theory of endoscopy as developed by Kottwitz, Langlands and Shelstad. This is research in the field of number theory. Number theory starts with the whole numbers and questions such as the divisibility of one whole number by another. It is among the oldest fields of mathematics and it was originally pursued for purely aesthetic reasons. However, within the last half century, it has become an essential tool in developing new algorithms for computer science and new error correcting codes for electronics.
该赠款支持Shahidi教授在自动形式和代表理论理论方面的工作。 研究人员将通过科特维茨,兰兰兹和谢尔斯塔德开发的内窥镜理论研究当地田地上古典群体的非差异脾气暴躁。 这是数字理论领域的研究。 数字理论始于整个数字和问题,例如一个整数的划分。 它是数学最古老的领域之一,最初是出于纯粹的审美原因而追求的。 但是,在过去的半个世纪中,它已成为开发用于计算机科学的新算法的重要工具,并为电子设备纠正新的错误代码。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Freydoon Shahidi其他文献

Freydoon Shahidi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Freydoon Shahidi', 18)}}的其他基金

L-functions, Fourier Transforms, and Gamma Factors
L 函数、傅立叶变换和伽玛因子
  • 批准号:
    1801273
  • 财政年份:
    2018
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Langlands Reciprocity and Automorphic Forms
朗兰兹互易和自守形式
  • 批准号:
    1500759
  • 财政年份:
    2015
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Langlands Correspondence, L-functions and Automorphic Forms
朗兰兹对应、L 函数和自守形式
  • 批准号:
    1162299
  • 财政年份:
    2012
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Problems in The Theory of Automorphic Forms and L-functions
自守形式和L-函数理论中的问题
  • 批准号:
    0700280
  • 财政年份:
    2007
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Conference on Automorphic Forms and the Trace Formula; October 13-16, 2004; Toronto, Canada
自守形式和迹公式会议;
  • 批准号:
    0405874
  • 财政年份:
    2004
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Standard Grant
Automorphic L-Functions and Langlands Functoriality
自同构 L 函数和朗兰兹函数性
  • 批准号:
    0200325
  • 财政年份:
    2002
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Special Semester Program on Automorphic Forms, Shimura Varieties and L-functions; January 1-May 31, 2003, Fields Institute, Toronto, Canada
自守形式、志村簇和 L 函数特别学期课程;
  • 批准号:
    0211133
  • 财政年份:
    2002
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Standard Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
  • 批准号:
    0071404
  • 财政年份:
    2000
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Standard Grant
Automorphic L-Functions, Endoscopy, and Representation Theory
自同构 L 函数、内窥镜检查和表示理论
  • 批准号:
    9970156
  • 财政年份:
    1999
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
  • 批准号:
    9622585
  • 财政年份:
    1996
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant

相似国自然基金

实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
  • 批准号:
    82374041
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
  • 批准号:
    62377005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
  • 批准号:
    82374446
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical Sciences: Automorphic Forms, Geometry and Analysis; October 9-12, 1996; Princeton, New Jersey
数学科学:自守形式、几何与分析;
  • 批准号:
    9625420
  • 财政年份:
    1996
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
  • 批准号:
    9622585
  • 财政年份:
    1996
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Zeta Functions and Automorphic Forms
数学科学:Zeta 函数和自同构形式
  • 批准号:
    9622427
  • 财政年份:
    1996
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dual Pair Correspondences Automorphic Forms and Hecke Algebras
数学科学:对偶对应自同构和赫克代数
  • 批准号:
    9623533
  • 财政年份:
    1996
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multiplicity One Results for Automorphic Forms via L-functions
数学科学:通过 L 函数得出自同构形式的重数一结果
  • 批准号:
    9501151
  • 财政年份:
    1995
  • 资助金额:
    $ 6.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了