Representations and Presentations of Finite Groups and Coverings of Curves
有限群和曲线覆盖的表示和展示
基本信息
- 批准号:0653873
- 负责人:
- 金额:$ 17.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposer will study some basic problems about finite and algebraic groups related to presentations, linear and permutation representations and cohomology with applications to the problems in arithmetic algebraic geometry -- particularly questions related to polynomials, rational functions and coverings of curves. In some recent work with Kantor, Kassabov and Lubotzky, it was shown that every finite simple group, with the possible of one family, have short and/or bounded presentations. This was a very surprising result and much better than conjectured. It does lead to some important and basic problems including removing the exception, understanding the differences (if any) between discrete presentations and profinite presentations and getting a good bound on cohomology. More generally, the proposer will consider linear and permutation representations of finite and algebraic groups and use these results to study problems in number theory and algebraic geometry. One wants to obtain fairly precise information about finite groups acting on curves and higher dimensional varieties. In the case of curves, one wants to know about possibilities for ramification groups. In higher dimensions, the non-irreducibility of certain modules leads to some interesting properties of varieties of families of curves as shown by earlier work of the proposer with Tiep answering questions of Katz and Kollar.Since the classification of finite simple groups was completed, many problems about finite groups and related questions in other areas of mathematics have been solved that would have been unimaginable without this classification. The classification manifests itself in two ways. First of all, it is a list and so to prove properties about all finite groups, one can often reduce it to questions about simple groups and then attack the families. For example, one can show that the group of all permutations of a set of a finite set has a presentation with 4 generators and 10 relations. It seems likely that 2 generations and 3 relations suffice (that would be the best possible answer). The standard presentations, known for a century, have a linear number of generators and quadratic number of relations (in the size of the set). Secondly, the classification also gives information about the subgroup structure of the simple groups. This is closely related to understanding how simple groups can act on sets as permutations and on vectors by linear transformations. Rather surprisingly, such information can lead to breakthroughs in seemingly unrelated topics. For example, one aspect of the proposal is to classify exceptional polynomials over a finite field. These are polynomials which are bijective (with degree large enough compared to the size of the field). Using knowledge of simple groups and their subgroups has lead to a complete classification aside from the case where the degree is a power of the characteristic of the field. The proposer expects to complete this classification. These polynomials have been studied since the late 1800's but it has been only in the last 15 years that there has been major progress. The proposer will study relatedproblems in number theory and geometry and translate them to questions in group theory and then apply this powerful theory.
该提案者将研究有关有限和代数群体与演示,线性和置换表示以及共同体相关的一些基本问题,并在算术代数几何学中应用了问题,尤其是与多项式,理性功能和曲线覆盖有关的问题。 在与Kantor,Kassabov和Lubotzky最近的一些工作中,表明每个有限的简单群体,有一个家庭的可能性,都有简短和/或有限的演讲。 这是一个非常令人惊讶的结果,比猜想要好得多。它确实导致了一些重要和基本的问题,包括删除例外,了解离散演示和涂鸦演示之间的差异(如果有的话),并构成了共同体的良好束缚。 更一般而言,提议者将考虑有限和代数群体的线性和置换表示,并使用这些结果来研究数字理论和代数几何形状中的问题。 一个人希望获得有关作用于曲线和更高维度品种的有限群体的相当精确的信息。 在曲线的情况下,人们想了解后果小组的可能性。 在较高的维度中,某些模块的不可回答性导致了一些有趣的曲线家族的有趣特性,如提议者的早期工作所示,TIEP回答了Katz和Kollar的问题。由于有限简单组的分类已经完成,因此,在数学的其他领域中,许多有限的问题和相关问题都无法解决这种分类,这是可以解决的。 分类以两种方式表现出来。 首先,这是一个列表,因此要证明所有有限群体的属性,人们通常可以将其减少到有关简单组的问题,然后攻击家庭。 例如,可以证明一组有限集的所有排列的组都有一个带有4个发电机和10个关系的演示文稿。似乎有2代和3个关系就足够了(这是最好的答案)。 一个世纪已知的标准演示文稿具有线性数量的发电机和二次关系数(以集合的大小)。 其次,分类还提供了有关简单组的亚组结构的信息。 这与理解简单组如何通过线性变换对置换和向量作用密切相关。令人惊讶的是,这些信息可能会导致看似无关的话题的突破。例如,该提案的一个方面是在有限字段上对特殊的多项式进行分类。 这些是两种族的多项式(与田间的大小相比,程度足够大)。 使用简单组及其子组的知识,除了该学位是该领域特征的力量外,还导致了一个完整的分类。 提议者希望完成此分类。自1800年代后期以来,这些多项式已经进行了研究,但直到过去15年才取得了重大进展。 提议者将研究数字理论和几何形状的相关问题,并将其转化为群体理论中的问题,然后应用这一强大的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Guralnick其他文献
The automorphism groups of a family of maximal curves
- DOI:
10.1016/j.jalgebra.2012.03.036 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Beth Malmskog;Rachel Pries - 通讯作者:
Rachel Pries
On rational and concise words
- DOI:
10.1016/j.jalgebra.2015.02.003 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Pavel Shumyatsky - 通讯作者:
Pavel Shumyatsky
Primitive monodromy groups of genus at most two
- DOI:
10.1016/j.jalgebra.2014.06.020 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Daniel Frohardt;Robert Guralnick;Kay Magaard - 通讯作者:
Kay Magaard
Robert Guralnick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Guralnick', 18)}}的其他基金
IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
- 批准号:
2316267 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
Collaborative Research: Ranges: Building Capacity to Extend Mammal Specimens from Western North America
合作研究:范围:建设能力以扩展北美西部的哺乳动物标本
- 批准号:
2228392 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Collaborative Research: Phenobase: Community, infrastructure, and data for global-scale analyses of plant phenology
合作研究:Phenobase:用于全球范围植物物候分析的社区、基础设施和数据
- 批准号:
2223512 - 财政年份:2022
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
- 批准号:
2027234 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
Collaborative Research: LightningBug, An Integrated Pipeline to Overcome The Biodiversity Digitization Gap
合作研究:LightningBug,克服生物多样性数字化差距的综合管道
- 批准号:
2104152 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Collaborative Research: Origins and drivers of extinction of Caribbean Avifauna
合作研究:加勒比鸟类灭绝的起源和驱动因素
- 批准号:
2033905 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Collaborative Research: Genealogy of Odonata (GEODE): Dispersal and color as drivers of 300 million years of global dragonfly evolution
合作研究:蜻蜓目 (GEODE) 谱系:传播和颜色是 3 亿年全球蜻蜓进化的驱动力
- 批准号:
2002457 - 财政年份:2020
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
- 批准号:
1927286 - 财政年份:2019
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
- 批准号:
1901595 - 财政年份:2019
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
1759898 - 财政年份:2018
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
相似国自然基金
融合多模态学习分析的英语演讲能力评估模型与应用研究
- 批准号:62107005
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
融合多模态学习分析的英语演讲能力评估模型与应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Differential Susceptibility for Developing Chronic Post-Surgical Pain Across Sleep Trajectories and Inflammatory Presentations
不同睡眠轨迹和炎症表现对慢性术后疼痛的易感性存在差异
- 批准号:
10572513 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Health Research Presentations Centered on Engineering and Allocating Better Grafts: Hosted by the Canadian Donation and Transplantation Research Program
以工程和分配更好的移植物为中心的健康研究演讲:由加拿大捐赠和移植研究计划主办
- 批准号:
485606 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Miscellaneous Programs
Initial presentations of multiple sclerosis: understanding pathways to diagnosis Filled
多发性硬化症的初步表现:了解诊断途径 Filled
- 批准号:
2887342 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Studentship
Development of an educational program for successful Q&A sessions in academic presentations in English
制定成功 Q 的教育计划
- 批准号:
23K02812 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Using Artificial Intelligence to Transform Online Video Lectures into Effective and Inclusive Agent-Based Presentations
协作研究:利用人工智能将在线视频讲座转变为有效且包容的基于代理的演示
- 批准号:
2201019 - 财政年份:2022
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant