NeTS-NOSS: SNI: A General and Robust Networking Architecture for Distributed Data Processing in Sensor Networks
NeTS-NOSS:SNI:传感器网络中分布式数据处理的通用且稳健的网络架构
基本信息
- 批准号:0625518
- 负责人:
- 金额:$ 42.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensor Network Inference (SNI) architecture is the first general and robust networking architecture developed specifically for inference in sensor networks that enables the rapid deployment of a wide range of complex large-scale querying, data processing and actuation tasks on a low-cost wireless sensornet. Unlike most previous approaches that focus on individual examples of such inference tasks (e.g., tracking or contour finding), our infrastructure is leveraged by a powerful abstraction of such tasks, Junction Trees, which enables the efficient solution of many inference problems, including probabilistic inference (e.g., sensor calibration and target tracking), regression (e.g., data modeling and contour finding), and optimization (e.g., actuator control, decision-making, and pattern classification). SNI is general and easy to deploy: the effective abstraction for a wide range of complex tasks enables the rapid deployment of novel sensornets applications. Furthermore, our approach is resource aware, efficient and adaptive: nodes have limited computational, communication and power resources, thus SNI automatically optimizes its communication pattern to reduce resource usage; this optimization is data driven, since the complexity of the high-level task is greatly dependent on the current state of the monitored phenomena. Robustness to node and communication failures is a fundamental element of SNI: Low-cost sensornets are prone to lossy communication, sensor and node failures; our architecture seeks to provide both theoretical and empirical robustness guarantees. Our evaluation process includes thorough testing on two different testbeds, with different hardware, in different locations. This evaluation is coupled with our education plan by using SNI in undergraduate and graduate classes.
传感器网络推理(SNI)体系结构是专门针对传感器网络推断的第一个通用且可靠的网络体系结构,可在低成本无线SensOrnet上快速部署一系列复杂的大规模查询,数据处理和驱动任务。 Unlike most previous approaches that focus on individual examples of such inference tasks (e.g., tracking or contour finding), our infrastructure is leveraged by a powerful abstraction of such tasks, Junction Trees, which enables the efficient solution of many inference problems, including probabilistic inference (e.g., sensor calibration and target tracking), regression (e.g., data modeling and contour finding), and optimization (e.g.,执行器控制,决策和模式分类)。 SNI是一般易于部署的:多种复杂任务的有效抽象使得可以快速部署新型的SensOrnets应用程序。此外,我们的方法是资源意识,高效和自适应的:节点的计算,通信和功率资源有限,因此SNI自动优化其通信模式以减少资源使用;该优化是数据驱动的,因为高级任务的复杂性在很大程度上取决于被监视现象的当前状态。对节点和通信失败的鲁棒性是SNI的基本要素:低成本的SensOrnet容易出现失去的通信,传感器和节点故障。我们的建筑旨在提供理论和经验鲁棒性保证。我们的评估过程包括在不同位置对带有不同硬件的两个不同测试床上进行彻底测试。通过在本科和研究生课程中使用SNI,该评估与我们的教育计划相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Guestrin其他文献
Graphical Models and Overlay Networks for Reasoning about Large Distributed Systems
用于大型分布式系统推理的图形模型和覆盖网络
- DOI:
10.1184/r1/6718754.v1 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Carlos Guestrin;S. Funiak - 通讯作者:
S. Funiak
Information cartography
信息制图
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:22.7
- 作者:
Dafna Shahaf;Carlos Guestrin;E. Horvitz;J. Leskovec - 通讯作者:
J. Leskovec
Multimedia Data Querying
多媒体数据查询
- DOI:
10.1007/978-0-387-39940-9_1039 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cornelia Caragea;V. Honavar;P. Boncz;Per;Suzanne W. Dietrich;Gonzalo Navarro;B. Thuraisingham;Yan Luo;Ouri E. Wolfson;S. Beitzel;Eric C. Jensen;O. Frieder;C. S. Jensen;N. Tradisauskas;E. Munson;A. Wun;K. Goda;Stephen E. Fienberg;Jiashun Jin;Guimei Liu;Nick Craswell;T. Pedersen;Cesare Pautasso;M. Moro;S. Manegold;B. Carminati;Marina Blanton;S. Bouchenak;Noël de Palma;Wei Tang;C. Quix;M. Jeusfeld;R. K. Pon;David J. Buttler;Weiyi Meng;P. Zezula;Michal Batko;Vlastislav Dohnal;J. Domingo;Denilson Barbosa;I. Manolescu;Jeffrey Xu Yu;E. Cecchet;Vivien Quéma;Xifeng Yan;G. Santucci;D. Zeinalipour;P. Chrysanthis;Amol Deshpande;Carlos Guestrin;S. Madden;C. Leung;Ralf Hartmut Güting;Amarnath Gupta;Heng Tao Shen;G. Weikum;Ramesh Jain;Jeffrey Xu Yu;P. Ciaccia;K. Candan;M. Sapino;C. Meghini;Fabrizio Sebastiani;U. Straccia;F. Nack;V. S. Subrahmanian;Maria Vanina Martinez;D. Reforgiato;T. Westerveld;M. Sebillo;G. Vitiello;Maria De Marsico;K. Voruganti;C. Parent;S. Spaccapietra;C. Vangenot;Esteban Zimányi;Prasan Roy;S. Sudarshan;Enrico Puppo;Peer Kröger;M. Renz;H. Schuldt;Solmaz Kolahi;A. Unwin;W. Cellary - 通讯作者:
W. Cellary
Automatic Generation of Issue Maps: Structured, Interactive Outputs for Complex Information Needs
自动生成问题地图:满足复杂信息需求的结构化、交互式输出
- DOI:
10.1184/r1/6714929.v1 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Carlos Guestrin;Dafna Shahaf - 通讯作者:
Dafna Shahaf
Stochastic roadmap simulation for the study of ligand-protein interactions
用于研究配体-蛋白质相互作用的随机路线图模拟
- DOI:
10.1093/bioinformatics/18.suppl_2.s18 - 发表时间:
2002 - 期刊:
- 影响因子:5.8
- 作者:
M. Apaydin;Carlos Guestrin;C. Varma;D. Brutlag;J. Latombe - 通讯作者:
J. Latombe
Carlos Guestrin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Guestrin', 18)}}的其他基金
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
- 批准号:
1218756 - 财政年份:2012
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
- 批准号:
1318441 - 财政年份:2012
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
- 批准号:
1258741 - 财政年份:2012
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
Collaborative Research: NeTS-NBD: SCAN: Statistical Collaborative Analysis of Networks
协作研究:NeTS-NBD:SCAN:网络统计协作分析
- 批准号:
0721591 - 财政年份:2008
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
NGNI-Medium: Collaborative Research: MUNDO: Managing Uncertainty in Networks with Declarative Overlays
NGNI-Medium:协作研究:MUNDO:使用声明性覆盖管理网络中的不确定性
- 批准号:
0803333 - 财政年份:2008
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
CAREER: Thinking that is "just right": Query-Specific Probabilistic Reasoning and its Application to Large-Scale Sensor Networks
职业:认为“恰到好处”:特定于查询的概率推理及其在大规模传感器网络中的应用
- 批准号:
0644225 - 财政年份:2006
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
CSR-EHS: Collaborative Research: A General, Efficient and Robust Platform for Enabling Control Applications in Sensor Networks
CSR-EHS:协作研究:用于在传感器网络中实现控制应用的通用、高效且稳健的平台
- 批准号:
0509383 - 财政年份:2005
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
相似国自然基金
晚三叠世卡尼期-诺利期之交的古环境变化与跨特提斯对比
- 批准号:
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
晚三叠世卡尼期-诺利期之交的古环境变化与跨特提斯对比
- 批准号:42272022
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
乌拉尔甘草中NO合酶(NOSs)小分子抑制剂的发现
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
斯皮诺素通过伏隔核腺苷A2A受体介导治疗失眠的神经环路机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于安全自愿报告与NOSS综合框架的空管人为因素研究
- 批准号:60776805
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:联合基金项目
相似海外基金
The Role of Nitric Oxide in Tracheobronchial Ciliary Motility.
一氧化氮在气管支气管纤毛运动中的作用。
- 批准号:
25461203 - 财政年份:2013
- 资助金额:
$ 42.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms for NOSs-mediated responses in microvessels
NOS介导的微血管反应的分子机制
- 批准号:
22390154 - 财政年份:2010
- 资助金额:
$ 42.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NeTS NOSS: Collaborative Research: Towards Robust and Self-Healing Heterogeneous Wireless Sensor Networks
NetS NOSS:协作研究:迈向稳健且自我修复的异构无线传感器网络
- 批准号:
0963578 - 财政年份:2009
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS-NOSS: Distributed Algorithms for Sensor-Aided Directories to Mobile Objects
合作研究:NeTS-NOSS:移动对象传感器辅助目录的分布式算法
- 批准号:
0846081 - 财政年份:2008
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
NOSS: Airborne Video Sensor Networks for Surveillance and Emergency Response
NOSS:用于监视和应急响应的机载视频传感器网络
- 批准号:
0721701 - 财政年份:2007
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant