FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
基本信息
- 批准号:0606485
- 负责人:
- 金额:$ 86.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: Supported by NSF, which began in 1998, this FRG program developed a novel 'electronic growth' concept, stressing the vital importance of quantum size effects of the itinerant electrons in defining the stability as well as the likely growth mode of metallic thin films on semiconductor substrates. This new concept adds a substantial new facet to the phrase 'quantum engineering', in that quantum effects can now be exploited to precisely control the formation of metallic structures in the quantum regime. Capitalizing on PI's strengths and conceptual advances achieved so far in the broad areas of metallic and magnetic nanostructures, this project aims at pushing the research objectives in three new frontiers: (a) One-dimensional (1D) Electronic Growth and 1D Quantum Structures; (b) Subsurfactant Epitaxy and Quantum Growth of Hybrid Quantum Structures; and (c) Adsorption Energetics, Surface Mobility, and Chemical Reactivity on Quantum Films. In area (a), as 1D electronic systems exhibit sharp spikes in the density of states (DOS), as opposed to the staircase DOS of 2D systems, one expects much stronger quantum size effects. This can potentially be exploited for controlling the formation of 1D quantum structures. The interplay between the spin-resolved DOS and 1D quantum growth will be investigated. In addition, 1D superconductivity will be pushed toward the clean limit and thoroughly explored. In area (b), by integrating the concepts of 'subsurfactant epitaxy' and 'electronic growth', the PIs will fabricate hybrid quantum structures involving superconductors and dilute magnetic semiconductors. Success here will allow to explore the novel concept of charge and spin manipulation in such hybrid systems. In area (c) the PIs will investigate how the quantum stability influences three intimately related surface phenomena: adsorption energetics of atoms and molecules, their surface migration rates, and chemical reactivity on selected catalytic metal films. NON-TECHNICAL: Artificially engineered electronic systems in reduced dimensions occupy a central part in modern materials research. By developing advanced synthesis techniques, materials scientists strive to tailor novel electronic materials through dimensional control with the ultimate atomic precision. The driving force is the realization that, in reduced dimensions, quantum effects are bound to be more pronounced, and may result in intriguing new physical properties of technological significance. The educational goals are manifold. The first is to prepare the next generation of materials scientists in nanoscience and nanotechnology through research training involving postdoctoral researchers, graduate students, and undergraduates. Undergraduate students are recruited through the REU programs in our institutions. The next goal is to provide broader education through the development of a new curriculum and new courses in nanoscience and technology at the graduate and undergraduate levels at both institutions. This educational goal has been achieved successfully and will continue to be pushed to new fronts. Finally, in terms of K-12 nanoscience education, the PIs will recruit high school science teachers through the UTEACH program at Univ. of Texas. In addition, to introduce the concept of nanoscience at the most basic level the PIs also foster a partnership with the Austin Children's Museum to develop demonstration kits for nanoscience education for young children from K-5. Similar efforts have been and will continue to be made at the University of Tennessee. As a specific example, one PI, Zhang, has served as a volunteer science instructor in a local primary school for years and will continue on such efforts.
技术:在 NSF 的支持下,该 FRG 项目于 1998 年开始,开发了一种新颖的“电子生长”概念,强调了流动电子的量子尺寸效应在定义金属薄膜的稳定性以及可能的生长模式方面的至关重要性在半导体衬底上。这个新概念为“量子工程”一词增加了一个重要的新方面,因为现在可以利用量子效应来精确控制量子体系中金属结构的形成。利用 PI 迄今为止在金属和磁性纳米结构广泛领域取得的优势和概念进展,该项目旨在推动三个新领域的研究目标:(a) 一维 (1D) 电子生长和 1D 量子结构; (b) 混合量子结构的次表面活性剂外延和量子生长; (c) 量子薄膜上的吸附能量、表面迁移率和化学反应性。在区域 (a) 中,由于 1D 电子系统的态密度 (DOS) 表现出急剧的峰值,与 2D 系统的阶梯 DOS 不同,人们预计会出现更强的量子尺寸效应。这可以潜在地用于控制一维量子结构的形成。我们将研究自旋分辨 DOS 和一维量子生长之间的相互作用。此外,一维超导将被推向清洁极限并得到彻底探索。在(b)领域,通过整合“表面活性剂外延”和“电子生长”的概念,PI将制造涉及超导体和稀磁半导体的混合量子结构。这里的成功将允许探索这种混合系统中电荷和自旋操纵的新概念。在 (c) 领域,PI 将研究量子稳定性如何影响三种密切相关的表面现象:原子和分子的吸附能量、它们的表面迁移速率以及所选催化金属薄膜上的化学反应性。非技术性:尺寸减小的人工设计电子系统占据了现代材料研究的核心部分。通过开发先进的合成技术,材料科学家努力通过具有终极原子精度的尺寸控制来定制新型电子材料。驱动力是认识到,在尺寸减小的情况下,量子效应必然会更加明显,并且可能会产生具有技术意义的有趣的新物理特性。教育目标是多方面的。首先是通过涉及博士后研究人员、研究生和本科生的研究培训,培养纳米科学和纳米技术领域的下一代材料科学家。本科生是通过我们机构的 REU 项目招收的。下一个目标是通过在两个机构的研究生和本科生级别开发纳米科学和技术的新课程和新课程来提供更广泛的教育。这一教育目标已经成功实现,并将继续推向新的前沿。最后,在K-12纳米科学教育方面,PI将通过大学的UTEACH项目招聘高中科学教师。德克萨斯州。此外,为了在最基本的层面上介绍纳米科学的概念,PI 还与奥斯汀儿童博物馆建立了合作伙伴关系,为 K-5 幼儿开发纳米科学教育演示套件。田纳西大学已经并将继续做出类似的努力。举一个具体的例子,PI张先生已在当地一所小学担任志愿者科学讲师多年,并将继续努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chih-Kang Shih其他文献
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
单层 1T-NbSe2 作为二维相关磁绝缘体
- DOI:
doi:10.1126/sciadv.abi6339 - 发表时间:
2021 - 期刊:
- 影响因子:13.6
- 作者:
Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
PTCDA Molecular Monolayer on Pb Thin Films: An Unusual π -Electron Kondo System and Its Interplay with a Quantum-Confined Superconductor
Pb 薄膜上的 PTCDA 分子单层:一种不寻常的近藤电子系统及其与量子限制超导体的相互作用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shuangzan Lu;Hyoungdo Nam;Penghao Xiao;Mengke Liu;Yanping Guo;Yusong Bai;Zhengbo Cheng;Jinghao Deng;Yanxing Li;Haitao Zhou;Graeme Henkelman;Gregory A. Fiete;Hong-Jun Gao;Allan H. MacDonald;Chendong Zhang;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
- DOI:
10.1021/acs.nanolett.1c00198 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo - 通讯作者:
Shangjr Gwo
Phonon Renormalization in Reconstructed MoS2 Moire Superlattices
重建 MoS2 莫尔超晶格中的声子重整化
- DOI:
10.1038/s41563-021-00960-1 - 发表时间:
2021 - 期刊:
- 影响因子:41.2
- 作者:
Jiamin Quan;Lukas Linhart;Miao-Ling Lin;Daehun Lee;Jihang Zhu;Chun-YuanWang;Wei-Ting Hsu;Junho Choi;Jacob Embley;Carter Young;Takashi Taniguchi;Kenji Watanabe;Chih-Kang Shih;Keji Lai;Allan H. MacDonald;Ping-Heng Tan;Florian Libisch;Xiaoqin Li - 通讯作者:
Xiaoqin Li
Giant up-conversion efficiency of InGaAs quantum dots in a planar microcavity
平面微腔中 InGaAs 量子点的巨大上转换效率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.6
- 作者:
G. J. Salamo;Min Xiao;Xiaoyong Wang;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Chih-Kang Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chih-Kang Shih', 18)}}的其他基金
Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
- 批准号:
2219610 - 财政年份:2022
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
- 批准号:
1808751 - 财政年份:2018
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
- 批准号:
1506678 - 财政年份:2015
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
- 批准号:
1415547 - 财政年份:2014
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures
FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐
- 批准号:
0906025 - 财政年份:2009
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
- 批准号:
0549417 - 财政年份:2006
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
- 批准号:
0306239 - 财政年份:2003
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
- 批准号:
0210383 - 财政年份:2002
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
- 批准号:
0071893 - 财政年份:2000
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
- 批准号:
9402938 - 财政年份:1994
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
相似国自然基金
自陷域激子量子点能带工程及其光学性质研究
- 批准号:22371090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
定向缺陷钝化工程和稀土掺杂钙钛矿量子点提高锡铅钙钛矿太阳电池效率及稳定性的研究
- 批准号:12304462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声子工程调控钙钛矿量子阱激子多体作用及发光性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GaN量子点嵌入能带工程的AlN材料n型掺杂的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非重金属ZnSe量子点的能带工程实现纯蓝光发射及高效发光二极管
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Conference: Workshop on Quantum Engineering Infrastructure II
会议:量子工程基础设施研讨会II
- 批准号:
2405015 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Discovery Projects
Travel: NSF Student Travel Grant for 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
旅费:2024 年 IEEE 国际量子计算与工程会议 (QCE) 的 NSF 学生旅费补助金
- 批准号:
2417602 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Fellowship
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
- 批准号:
2326837 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant