Uncovering Nodal signaling and transcription factor interactions in somitic mesoderm development using single-cell deep learning methods
使用单细胞深度学习方法揭示体细胞中胚层发育中的节点信号传导和转录因子相互作用
基本信息
- 批准号:10749611
- 负责人:
- 金额:$ 4.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnteriorAutomobile DrivingBindingBiologyCRISPR/Cas technologyCellsCellular AssayChromatinChromosome MappingClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComputer ModelsComputer softwareComputing MethodologiesDNADNA BindingDataDevelopmentDissectionEmbryoEnhancersFamilyGene ExpressionGene Expression RegulationGenesGenetic ScreeningGenetic TranscriptionGenomicsIn Situ HybridizationKnock-outKnowledgeLearningLigandsLinkMapsMediatingMesodermMethodsModelingMutagenesisMutateMutationNeural Network SimulationNodalPhenotypePilot ProjectsPopulationProtein FamilyProteinsRegulator GenesRegulatory ElementResearchResolutionResourcesRoleSeriesSignal TransductionSiteSomitesSpecific qualifier valueSpecificityTailTestingTimeTrainingTraining ProgramsTransforming Growth Factor betaTransforming Growth Factor beta ReceptorsTransposaseUndifferentiatedUntranslated RNAVertebratesVisualWorkWritingZebrafishcell typecofactorcomputerized toolscostdata modelingdata toolsdeep learningdeep neural networkexperimental studyflexibilitygene discoverygenetic approachgenome-wideimprovedin silicolearning strategymembermutantnetwork modelsneural networknovelopen sourceprogramspromoterreceptorrecruitsingle cell technologysingle-cell RNA sequencingskillssomitogenesissuccesssyntaxtranscription factorzebrafish development
项目摘要
PROJECT SUMMARY/ABSTRACT
Major gaps remain in our knowledge of how transcription factors (TFs) interact to bind target
cis-regulatory elements (CREs) and dictate gene expression during development. There are ~1600 TFs in
vertebrates, and therefore traditional approaches of genetic screens with TF pairwise knockouts would require
>2.5 million experiments. Even with high throughput methods, this is not experimentally feasible. I will build
novel computational tools and deep neural networks and use multiplexed high-throughput single-cell Assay for
Transposase-Accessible Chromatin (scATAC-seq) data from zebrafish throughout development. These deep
neural networks will be used for in silico experiments to model CRE interactions to learn the cell-type
specific regulatory syntax of T-box proteins during development. These combinations of TF-TF
interactions from in silico experiments will then be tested with targeted CRISPR-Cas9 mutagenesis followed by
phenotype profiling with in situ hybridization and high-throughput low-cost scATAC and scRNA-seq.
In Aim 1, I will make a genome-wide cis-regulatory map of cell-type specific gene regulation of
zebrafish to uncover the role of Nodal signaling in zebrafish somitic mesoderm development. In zebrafish,
mutations to Nodal, a ligand to TGF-Beta receptor proteins, cause a phenotype of aberrantly undifferentiated
trunk somitic mesoderm and correctly differentiated tail somitic mesoderm. The mechanisms driving the
differences between these somites are unknown. To resolve this mystery, I will generate single-cell time series
wild-type and Nodal deficient embryos across the continuum of zebrafish development using multiplexed
high-throughput scATACseq and scRNAseq data. Computationally linking these data will represent a
comprehensive reference of zebrafish CRE and transcriptional development and a valuable resource for all
zebrafish biologists. By improving the software package, Cicero, to include flexible Poisson lognormal network
models, we can achieve the resolution necessary to find novel cell-type specific differences in
enhancer-promoter links during development and perturbationc
In Aims 2, I will train and validate a deep learning neural network model to predict pairs of transcription
factors that interact to activate cell-type specific gene programs. I will use these data and computational
tools to perform in silico experiments to learn the cell-type specific regulatory syntax of T-box TFs
during development. After performing in silico experiments using this neural network, I will rank candidate
TF-TF interactions to test using high-throughput methods for targeted CRISPR-Cas9 mutagenesis to knock out
TFs. I will apply this method to uncover the cis-regulatory syntax that allows T-box family transcription factors
to exert their DNA loci specificity.
项目摘要/摘要
我们对转录因子(TFS)如何相互作用以结合目标的知识仍然存在主要差距
顺式调节元件(CRE)并决定发育过程中的基因表达。有〜1600 tfs
脊椎动物,因此具有TF成对敲除遗传筛查的传统方法将需要
> 250万实验。即使使用高通量方法,这也不是可行的。我会建造
新颖的计算工具和深度神经网络,并使用多路复用的高通量单细胞测定
整个发育过程中,来自斑马鱼的转座酶可访问染色质(SCATAC-SEQ)数据。这些很深
神经网络将用于硅实验中,以建模CRE相互作用以学习细胞类型
发育过程中T-box蛋白的特定调节语法。 TF-TF的这些组合
然后,将使用靶向的CRISPR-CAS9诱变进行测试中的计算机实验的相互作用
与原位杂交和高通量低成本SCATAC和SCRNA-SEQ进行表型分析。
在AIM 1中,我将对细胞类型的特异性基因调控的全基因组顺序调节图
斑马鱼揭示了鼻虫信号传导在斑马鱼中胚层发育中的作用。在斑马鱼,
淋巴结突变是TGF-β受体蛋白的配体,引起异常未分化的表型
躯干中胚层并正确区分了尾部躯干中胚层。驱动
这些节点之间的差异是未知的。为了解决这个谜,我将生成单细胞时间序列
使用多路复用
高通量ScatacSeq和Scrnaseq数据。在计算上链接这些数据将代表
斑马鱼Cre和转录发展的全面参考,以及所有人的宝贵资源
斑马鱼生物学家。通过改进软件包Cicero,包括柔性泊松log normalal网络
模型,我们可以达到找到新的细胞类型特定差异所需的分辨率
在开发和扰动过程中的增强剂促销链接
在AIMS 2中,我将训练并验证深度学习神经网络模型以预测成对的转录
相互作用以激活细胞类型特定基因程序的因素。我将使用这些数据和计算
在计算机实验中执行的工具,以学习T-box TFS的细胞类型特定调节语法
在开发过程中。在使用此神经网络进行计算机实验中,我将对候选人进行排名
TF-TF相互作用使用高通量方法进行测试,用于靶向CRISPR-CAS9诱变以淘汰
TFS。我将使用此方法来揭示允许T-box家族转录因子的顺式调节语法
发挥其DNA基因座特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Carter Mullen其他文献
Andrew Carter Mullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
- 批准号:82303776
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
- 批准号:82371458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于MST4-YAP-MYC信号通路的慢痞消调控氧化磷酸化水平治疗胃癌前病变的机制研究
- 批准号:82374292
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL12趋化CXCR4+/α-SMA+成骨前体细胞促进黄韧带骨化的机制研究
- 批准号:82302745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫外光解中间体激活荧光构建亚硝胺及其前体物的新方法和机理研究
- 批准号:82373631
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Novel models to study dorsal root ganglion neurons in knee osteoarthritis pain
研究膝骨关节炎疼痛中背根神经节神经元的新模型
- 批准号:
10783393 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Antigen presentation to the adaptive immune system in the choroid contributes to ocular autoimmune disease
脉络膜中的适应性免疫系统的抗原呈递导致眼部自身免疫性疾病
- 批准号:
10740465 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
SIGNALING OF SALIENCE AND PREDICTION ERRORS BY THE INSULA
脑岛发出的显着信号和预测误差
- 批准号:
10656971 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Synaptic Actions of Amphetamine in the Striatum
安非他明在纹状体中的突触作用
- 批准号:
10668662 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别: