Modeling Actuation and Shape Selection in Soft Materials

软材料中的驱动建模和形状选择

基本信息

  • 批准号:
    0605889
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-15 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research, both analytical and computational, on a range of problems that span fundamental physics to industrial applications. The research focus is on soft materials as might be found in rubbers or naturally in biological systems, e.g., muscles. The research will look at how certain types of rubber-like materials respond to external stimuli such as electric currents. Another topic of research is how biomolecules and simple biological structures assemble to form more complex structures. The research will involve students and postdoctoral research associates.The principal investigators will carry out theoretical analysis and computer simulation studies of two problems related to shape evolution in soft materials. First, they focus on the actuation of liquid crystal elastomers, which change their shape in response to changes in temperature, applied electric fields, and optical illumination. These materials can bend as well as lengthen and contract, and have the potential to be used as "artificial muscles" for robotics, MEMS, and microfluidics applications. Second, the principal investigators will investigate self-assembled microstructures of amphiphilic molecules, such as lipid tubules and helical ribbons, which spontaneously form in complex shapes out of solution. These structures have applications in microencapsulation and controlled release, and can also serve as templates to form metallic microstructures used in microwave-absorbing composite materials. This type of self-assembly is also observed in biological materials, such as bile, both in vivo and in vitro.In both liquid crystal elastomers and in self-assembly of tubules and ribbons, materials of interestexhibit unusual combinations of ferroelasticity, ferroelectricity, and/or flexoelectricity. Mesogenic ordering of the material and chirality/chiral symmetry-breaking also play important roles. Each unique combination of material properties creates new opportunities for technology development and new challenges for both fundamental theory and materials engineering.Intellectual merit: The primary goals of the project are (1) to make progress with thedevelopment of fundamental theory of these materials, and (2) to apply that theory to create acontinuum-scale finite element simulation tool to model the dynamics of these materials at thedevice level and on long time scales. This project is thus intended to bridge the gap fromfundamental soft condensed matter theory to materials engineering and even product design. Thenew simulation tool represents a novel application of finite element elastodynamics to study shape changes caused by evolving mesogenic order in soft materials. The principal investigators have a strong record of fruitful collaboration and bring complementary expertise in analytical calculations and computer simulation to the work. Kent State University's Liquid Crystal Institute is a center of excellence in the study of soft materials and provides an ideal location for this research.Broader impacts: The project will involve the active participation of a graduate student and apostdoctoral fellow, with additional participation of students provided by the Chemical Physics Interdisciplinary Program at Kent State University. Both investigators have an exceptional track record in recruiting and working with female and minority students, and already have female and minority students working in their group at Kent State University. The investigators will participate in the Liquid Crystal Institute's ongoing community outreach activities, including presentations at local K-12 schools and hosting visiting student groups. The soft materials studied here are promising for a wide range of technological applications mentioned above. Through the Liquid Crystal Institute's well-established Industrial Partnership Program, we plan to transition the developed simulation tools and technological concepts for commercial use.
该奖项支持分析和计算的理论研究,这些研究范围涉及一系列基本物理学到工业应用。 该研究重点是橡胶或生物系统中可能发现的软材料,例如肌肉。 这项研究将研究某些类型的橡胶状材料如何应对外部刺激(例如电流)。 研究的另一个主题是生物分子和简单的生物结构如何组装以形成更复杂的结构。 这项研究将涉及学生和博士后研究伙伴。首席研究人员将对与软材料中形状相关的两个问题进行理论分析和计算机模拟研究。首先,他们专注于液晶弹性体的致动,这些弹性体会因温度变化,施加的电场和光照明而改变形状。这些材料可以弯曲和延长和收缩,并有可能用作机器人,MEM和微流体应用的“人造肌肉”。其次,主要研究人员将研究两亲分子的自组装微结构,例如脂质小管和螺旋丝带,它们从溶液中自发形成复杂形状。这些结构在微囊化和受控释放中具有应用,还可以用作模板,形成用于微波炉吸收复合材料的金属微观结构。在生物材料中也观察到这种类型的自组装,例如在体内和体外。在液体晶体弹性体以及小管和丝带的自组装中,兴趣的材料也可以异常地组合了铁弹性,铁自我和/或挠性电性。材料和手性/手性对称性破坏的中源性顺序也起着重要作用。材料属性的每种独特组合都为基本理论和材料工程的新挑战创造了新的机会。智能优点:项目的主要目标是(1)通过对这些材料的基本理论的开发来取得进展,以及(2)应用该理论来创建acontinuum scale scale scale scale scale元素模拟工具,以模拟这些材料的动力学量表,以建模材料,以建立良好的水平。因此,该项目旨在弥合从软凝结物质理论到材料工程甚至产品设计的差距。然后,仿真工具代表了有限元弹性动力学的新应用,以研究由软材料中的中源性顺序不断发展而导致的变化。首席研究人员的合作记录很强,并为分析计算和计算机模拟带来了补充专业知识。肯特州立大学的液晶研究所是软材料研究的卓越中心,并为这项研究提供了理想的位置。Boader的影响:该项目将涉及研究生和Apostdoctoral研究员的积极参与,并在肯特州立大学的化学物理学跨学科计划提供的其他学生参与。 两位调查人员在招募和与少数族裔学生一起招募和合作方面都有出色的记录,并且已经有女性和少数族裔学生在肯特州立大学的小组中工作。调查人员将参加液晶研究所正在进行的社区外展活动,包括在当地K-12学校的演讲以及主持访问的学生团体。对于上面提到的广泛的技术应用,这里研究的软材料很有希望。通过液晶研究所建立的良好工业合作伙伴计划,我们计划过渡开发的仿真工具和商业用途的技术概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Selinger其他文献

Robin Selinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Selinger', 18)}}的其他基金

Collaborative Research: Microfabrication and Self-Assembly of Shape-Changing Hydrogels with Chromonic Liquid Crystalline Order
合作研究:彩色液晶有序变形水凝胶的微加工和自组装
  • 批准号:
    1663041
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Programmable and Emergent Structures in Soft Matter: Chirality, Polarity, and Auto-Origami
软物质中的可编程和紧急结构:手性、极性和自动折纸
  • 批准号:
    1409658
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Topological Defects, Curved Geometries, and Shape Evolution in Soft Matter
软物质中的拓扑缺陷、弯曲几何形状和形状演化
  • 批准号:
    1106014
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Physics of Dislocation Patterning and Size Effects in Plasticity
位错图案物理和可塑性尺寸效应
  • 批准号:
    0116090
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Evolution of Dislocation Microstructures
职业:位错微结构的演化
  • 批准号:
    9702234
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

多场耦合作用下含缺陷微纳致动器动态吸合失稳与运动控制研究
  • 批准号:
    12372020
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
致动器用大应变钛酸铋钠基无铅陶瓷低滞回与高温度稳定性协同调制及疲劳特性研究
  • 批准号:
    52372126
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于动强度劣化的近断层土石混合体边坡脉冲致滑机理研究
  • 批准号:
    52309138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真三轴采动条件下深部层状岩体失稳致灾机理与锚固控制效应
  • 批准号:
    52374095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于拓扑缺陷的光响应液晶弹性体剪纸致动行为机制研究
  • 批准号:
    62305323
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
3D micro-bioprinting: acoustic actuation to shape single-cell organization
3D 微生物打印:声学驱动塑造单细胞组织
  • 批准号:
    DE200100909
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Actuation of Shape-Changing Mechanical Devices
变形机械装置的设计与驱动
  • 批准号:
    RGPIN-2016-06392
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了