Lower and Upper Curvature Bounds: Topology vs. Geometry
曲率下界和曲率上界:拓扑与几何
基本信息
- 批准号:0604557
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with the effects of various lower and upper curvature bounds on the topology of Riemannian manifolds and the structure of Gromov-Hausdorff limits of manifolds with lower curvature bounds. Broadly speaking this proposal has three main parts. The first part deals with the structure of manifolds with lower sectional and Ricci curvature bounds. Together with A.Petrunin and W. Tuschmann the PI plans to continue investingating the structure of the fundamental groups of nonnegatively and almost nonnegatively curved manifolds and also look for new topological obstructions to nonnegative and almost nonnegative curvature for simply connected manifolds. The PI also plans to continue his work with B. Wilking on the fundamental groups of manifolds with lower Ricci curvature bounds. In particular we would like to show that the fundamental group of a manifold of almost nonnegative Ricci curvature contains a nilpotent subgroup of finite index with the bound on the index depending only on the dimension.The second part of the proposal (which is a joint project with A. Lytchak) deals with the notion of submetries which is a generalization of Riemannian submersion to singular spaces and its relation to collapsing under a lower curvature bound. The last part is the joint project with I. Belegradek on continuing our study of ends of open negatively and nonpositively pinched manifolds. This proposal deals with the question of how the local geometric picture of a space (i.e the way it's "curved" or "bent" locally) influences the global properties of the space (such as the number of holes of various dimensions the space might have). One of the ways to measure how a space is curved is given by its Ricci curvature. Understanding the influence of various Ricci curvature bounds on the global properties of a space is not only interesting in its own right but it's also important because Ricci curvature plays a fundamental role in the Einstein general relativity theory.
该建议涉及各种下部和上部曲率边界对Riemannian歧管拓扑的影响以及具有较低曲率边界的歧管的Gromov-Hausdorff限制的结构。从广义上讲,该提议有三个主要部分。第一部分涉及具有较低截面和RICCI曲率边界的歧管结构。 PI与A. -Petrunin和W. Tuschmann一起计划继续投资于非模仿和几乎非弯曲的流形的基本群体的结构,还为简单地连接的流形寻找了非负和非阴性弯曲的新拓扑障碍。 PI还计划继续与B. Wilking一起工作,该基本曲线曲率范围较低。特别是,我们要表明,几乎非负RICCI曲率的一组基本组包含一个有限指数的尼尔属性亚组,仅根据尺寸限制在索引上,取决于提案的第二部分。在较低的曲率结合下。最后一部分是与I. belegradek的联合项目,继续我们对开放式和非态度捏合的末端进行研究。该提案涉及一个问题,即空间的局部几何形状图片(即,在本地“弯曲”或“弯曲”的方式如何影响空间的全局特性(例如空间可能拥有的各个维度的孔的数量)。测量空间弯曲方式的方法之一是其RICCI曲率给出。了解各种RICCI曲率界限对空间全球特性的影响不仅有趣,而且这也很重要,因为RICCI曲率在爱因斯坦一般相对论理论中起着基本作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Goldman其他文献
The ChatGPT Artificial Intelligence Chatbot: How Well Does It Answer Accounting Assessment Questions?
ChatGPT 人工智能聊天机器人:它回答会计评估问题的能力如何?
- DOI:
10.2308/issues-2023-013 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
David A. Wood;M. P. Achhpilia;Mollie T. Adams;Sanaz Aghazadeh;Kazeem O. Akinyele;Mfon Akpan;Kristian D. Allee;Abigail Allen;E. D. Almer;Daniel Ames;Viktor Arity;Dereck Barr‐Pulliam;K. A. Basoglu;Andrew Belnap;Jeremiah W. Bentley;T. Berg;Nathan R. Berglund;Erica Berry;Avishek Bhandari;Md Nazmul Hasan Bhuyan;Paulette Black;Eva Blondeel;David Bond;Annika Bonrath;A. F. Borthick;E. S. Boyle;M. Bradford;D. M. Brandon;Joseph F. Brazel;Bryan G. Brockbank;Marcus Burger;Dmitri Byzalov;James N. Cannon;Cecile Q. Caro;Abraham H. Carr;Jack M. Cathey;Ryan Cating;K. Charron;Stacy Chavez;Jason Chen;Jennifer C. Chen;Jennifer W. Chen;Christine Cheng;Xu Cheng;Brant E. Christensen;K. Church;N. J. Cicone;Patience Constance;Lauren A. Cooper;Candice L. Correia;Joshua G. Coyne;W. Cram;Asher Curtis;Ronald J. Daigle;Steven Dannemiller;Stephan A. Davenport;Gregory S. Dawson;Karen J. De Meyst;Scott Dell;Sebahattin Demirkan;Christine A. Denison;Hrishikesh Desai;S. DeSimone;Lea Diehl;Ruth Dimes;Bei Dong;Amy M. Donnelly;Adam W Du Pon;H. Duan;Ada Duffey;R. Dunn;Mary P. Durkin;Ann C. Dzuranin;Rachel M. Eberle;Matthew S. Ege;Dina El Mahdy;Adam M. Esplin;Marc Eulerich;P. Everaert;Nusrat Farah;L. Farish;Michael Favere;Dutch Fayard;Jessica R. Filosa;Melinda Ford;Diana R. Franz;Bachman P. Fulmer;Sarah Fulmer;Z. Furner;Sonia Gantman;Steve Garner;Jace B. Garrett;Xin Geng;J. Golden;William Goldman;J. Gómez;M. Gooley;Shawn P. Granitto;Karen Y. Green;Cindy L. Greenman;Gaurav Gupta;Ronald N. Guymon;Kevin Hale;Christopher J. Harper;S. Hartt;Holly Hawk;S. Hawkins;E. M. Hawkins;D. Hay;Rafael Heinzelmann;Cassy D. Henderson;Bradley E. Hendricks;William G. Heninger;M. Hill;Nicole Holden;D. K. Holderness;Travis P. Holt;Jeffrey L. Hoopes;Sheng;Feiqi Huang;H. Huang;Ting‐Chiao Huang;Brian W. Huels;Kara Hunter;P. Hurley;Kerry K. Inger;Sharif Islam;Isaac Ison;H. Issa;Andrew B. Jackson;Scott C. Jackson;Diane J. Janvrin;Peggy D. Jimenez;Daniel Johanson;J. Judd;Brett S. Kawada;A. Kelton;Sara Kern;Jon N. Kerr;Marsha B. Keune;Mindy Kim;B. Knox;G. Kogan;Amr Kotb;Ronja Krane;Joleen Kremin;Kimberly S. Krieg;Jonathan Kugel;Ellen M. Kulset;C. Kuruppu;Garrison LaDuca;Barbara Lamberton;Melvin A. Lamboy;Bradley Lang;Stephannie A. Larocque;M. Larson;Bradley P. Lawson;James G. Lawson;Lorraine S. Lee;Margarita M. Lenk;Michelle Li;Jonathan T. Liljegren;Yi‐Hung Lin;Wu;Zishang Liu;Brandon Lock;James H. Long;Tina M. Loraas;Suzanne L. Lowensohn;Thomas R. Loy;Hakim Lyngstadaas;Wim Maas;J. MacGregor;D. Madsen;Carissa L. Malone;Maximilian Margolin;Mary E. Marshall;Rachel M. Martin;Colleen McClain Mpofu;Chris Mccoy;Nicholas McGuigan;D. McSwain;Michele D. Meckfessel;M. Mellon;Olivia S. Melton;Julie M. Mercado;Steven Mitsuda;K. Modugu;Stephen Moehrle;A. M. Chaghervand;Kevin C. Moffitt;J. Moon;Brigitte Muehlmann;John Murray;Emmanuel S. Mwaungulu;Noah Myers;J. Naegle;Martin J. Ndicu;Aaron S. Nelson;A. L. Nguyen;Thomas Niederkofler;Ehsan Nikbakht;Ann D. O'Brien;Kehinde Ogunade;Daniel E. O’Leary;M. Oler;Derek K. Oler;K. Olsen;J. I. Otalor;Kyle W. Outlaw;Michael E. Ozlanski;Jenny Parlier;Jeffrey S. Paterson;Christopher A. Pearson;M. J. Petersen;S. Petra;Matthew D. Pickard;Jeffrey S. Pickerd;R. Pinsker;Catherine Plante;James M. Plečnik;R. Price;Linda A. Quick;J. Raedy;Robyn L. Raschke;Julie Ravenscraft;Vernon Richardson;Brett A. Rixom;J. F. Robertson;Iyad Rock;Miles A. Romney;Andrea M. Rozario;Michael F. Ruff;Kathleen Rupley;A. Saeedi;Aaron Saiewitz;Leigh Salzsieder;Sayan Sarkar;Michael Saulls;Tialei A. Scanlan;Tammie J. Schaefer;Daniel Schaupp;Gary P. Schneider;A. Seebeck;R. Sellers;Samantha C. Seto;Romi;Yuxin Shan;Matthew G. Sherwood;Maggie Singorahardjo;H. Skaftadottir;Justyna Skomra;Jason L. Smith;Dallin O. Smith;James Smith;Mason C. Snow;Ryan D. Sommerfeldt;Kate B. Sorensen;Trevor L. Sorensen;Andrew C. Spieler;Matthew A. Stallings;Lesya Stallings;A. Stancill;Jonathan D. Stanley;Chad M. Stefaniak;Nathaniel M Stephens;Bryan W. Stewart;Theophanis C. Stratopoulos;Daniel A. Street;Meena Subedi;S. Summers;C. H. Sundkvist;Christina Synn;Amanuel F. Tadesse;Gregory P. Tapis;Kerri L. Tassin;Samantha Taylor;M. Teal;Ryan Teeter;M. Tharapos;Jochen C. Theis;Jack Thomas;K. Thompson;Todd A. Thornock;Wendy M. Tietz;Anthony M. Travalent;Brad S. Trinkle;J. Truelson;Michael C. Turner;Brandon Vagner;H. Vakilzadeh;Jesse van der Geest;Victor van Pelt;Scott D. Vandervelde;Jose Vega;Sandra C. Vera;Brigham Villanueva;N. Vincent;Martin Wagener;S. Walton;Rick C. Warne;Olena V. Watanabe;David Watson;M. Watson;J. Weber;T. Weirich;Ashley N. West;Amanda L. Wilford;Aaron B. Wilson;Brian Winrow;Timothy Winrow;Tasia S. Winrow;D. Wiseman;Annie L. Witte;B. D. Wood;Jessica Wood;Darryl J. Woolley;Nicole S. Wright;Juan Wu;Xiao;Dimitri Yatsenko;Courtney E. Yazzie;GL Young;C. Zhang;Aleksandra B. Zimmerman;E.N.W. Zoet - 通讯作者:
E.N.W. Zoet
Relating WEATHER TRENDS AND RESIDENCE LENGTH TO LOCAL CLIMATE CHANGE CONCERNS IN KNOXVILLE, TENNESSEE
将田纳西州诺克斯维尔的天气趋势和居住时间与当地气候变化问题联系起来
- DOI:
10.1080/00167428.2023.2239879 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
D. Burow;Alyssa Cannistraci;Savannah A. Collins;H. Davis;William Goldman;N. Grondin;Dakotah D. Maguire;Kelsey N. Ellis - 通讯作者:
Kelsey N. Ellis
William Goldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Goldman', 18)}}的其他基金
Dynamics and the Classification of Geometries on Manifolds
流形上的动力学和几何分类
- 批准号:
2203493 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Topology and Dynamics of Geometric Structures
几何结构的拓扑和动力学
- 批准号:
1709791 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
International Centre for Theoretical Sciences, Bangalore, India
国际理论科学中心,印度班加罗尔
- 批准号:
1261422 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
RNMS: Geometric Structures and Representation Varieties
RNMS:几何结构和表示种类
- 批准号:
1107367 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: COLLABORATIVE RESEARCH: DEFORMATION SPACES OF GEOMETRIC STRUCTURES
FRG:协作研究:几何结构的变形空间
- 批准号:
1065965 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Advanced School and Workshops on Discrete Groups in Complex Geometry
复杂几何离散群高级学校和研讨会
- 批准号:
1010995 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
IMS PROGRAM ON GEOMETRY, TOPOLOGY AND DYNAMICS OF CHARACTER VARIETIES: SUMMER SCHOOL, WORKSHOP AND CONFERENCE
IMS 人物几何、拓扑和动力学项目:暑期学校、研讨会和会议
- 批准号:
0965849 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CIRM Workshop: Representations of Surface Groups
CIRM 研讨会:表面基团的表示
- 批准号:
0804207 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Ricci曲率非负的流形上多项式增长的调和函数
- 批准号:12271531
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
非负曲率流形上的对偶叶状结构及水平度量
- 批准号:12261013
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
叶状流形上数量曲率相关问题的研究
- 批准号:12271266
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
带边流形上狄拉克型算子的指标理论,相对η不变量及正数量曲率问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
2022年黎曼-芬斯勒几何专题讲习班
- 批准号:12126403
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
非負の重みつきリッチ曲率をもつ空間上での幾何解析
非负加权里奇曲率空间的几何分析
- 批准号:
22KJ2110 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
データ空間上の測地距離およびその変換に着目した統計解析
数据空间测地距离统计分析及其变换
- 批准号:
22K03439 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
準射影多様体上のケーラー・アインシュタイン計量の境界挙動と対数的標準束の正値性
准射影流形上凯勒-爱因斯坦度量的边界行为及对数标准通量的正值
- 批准号:
21K03232 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse Methods for Spatiotemporal Characterization of Gastric Electrical Activity and its Association with Upper GI Symptoms from Cutaneous Multi-electrode Recordings
皮肤多电极记录胃电活动时空特征及其与上消化道症状关联的逆向方法
- 批准号:
10196836 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Inverse Methods for Spatiotemporal Characterization of Gastric Electrical Activity and its Association with Upper GI Symptoms from Cutaneous Multi-electrode Recordings
皮肤多电极记录胃电活动时空特征及其与上消化道症状关联的逆向方法
- 批准号:
10394942 - 财政年份:2021
- 资助金额:
-- - 项目类别: