A Multiscale Modeling Approach for Large Deformation Behavior of Erythrocyte Membrane
红细胞膜大变形行为的多尺度建模方法
基本信息
- 批准号:0528548
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed research is to develop a micromechanical modeling framework that links the large deformation behavior of erythrocyte (red blood cell) cytoskeleton membrane to its detailed structure and single protein macromolecule behaviors. The erythrocyte cytoskeleton membrane is an extraordinary material system that combines a fluidic lipid bilayer with a rubber-like scaffolding protein network to form a flexible membrane that can undergo large deformation. Recent studies on the diseased red blood cells indicate that the membrane structure and the single protein macromolecule behaviors play a critical role in determining the shape and deformability, and thus the physiological functions of red blood cells. However, previous studies on the shape and deformation of cytoskeletal membrane using continuum mechanics neglect the detailed information about the structure of the cytoskeleton membrane. As a consequence, the structure-deformability relationship cannot be established. In the proposed work, a micromechanical modeling framework that is based on the structure of erythrocyte cytoskeleton membrane will be developed. The micromechanically representative volume element will be modeled as a rubbery membrane (skeletal protein network) attached to two membrane layers (the lipid bilayer) via connecting elements (integral proteins). Parametric studies which simulate the structure change of red blood cell under diseased conditions will be conducted to investigate the structure-function relationship of large deformation behavior of erythrocyte cytoskeleton membrane. The proposed research will inspire new concepts for developing a structure based constitutive model to describe the large deformation behavior of red blood cells, and will greatly assist the exploration of the molecular mechanism of red blood cell deformations under diseased conditions. The methodology of combining nanomechanics with the new knowledge in life science is expected to bring in new insight into the miracle of life and eventually result in revolutionary new therapy and improvement of human health. In addition, the proposed work, together with proposed education plans, will enhance higher education in nanotechnology and biotechnology and will inspire young scientists and engineers to develop their careers in this exciting field.
拟议的研究的目的是开发一个微机械建模框架,该框架将红细胞(红细胞)细胞骨架膜的较大变形行为与其详细结构和单蛋白大分子行为联系起来。红细胞细胞骨架膜是一种非凡的材料系统,将液体脂质双层与橡胶状的脚手架蛋白网络结合在一起,形成一种柔性膜,可以经历大变形。关于患病的红细胞的最新研究表明,膜结构和单蛋白大分子行为在确定形状和变形性方面起着至关重要的作用,因此是红细胞的生理功能。但是,先前使用连续力学的细胞骨架膜形状和变形的研究忽略了有关细胞骨架膜结构的详细信息。结果,无法建立结构可构性关系。在拟议的工作中,将开发基于红细胞细胞骨架膜结构的微机械建模框架。微机械代表性的体积元件将通过连接元件(积分蛋白)连接到两个膜层(脂质双层)上的橡胶膜(骨骼蛋白网络)。将进行模拟红细胞在患病条件下的结构变化的参数研究,以研究红细胞细胞骨架膜的大变形行为的结构 - 功能关系。拟议的研究将激发新的概念,以开发基于结构的本构模型来描述红细胞的大变形行为,并将大大帮助探索患病病情下红细胞变形的分子机制。预计将纳米力学与生命科学新知识相结合的方法将带来对生活奇迹的新见解,并最终导致革命性的新疗法和改善人类健康。此外,拟议的工作以及拟议的教育计划将增强纳米技术和生物技术的高等教育,并将激发年轻的科学家和工程师在这个令人兴奋的领域发展其职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hang Qi其他文献
Federated Visual Classification with Real-World Data Distribution
- DOI:
10.1007/978-3-030-58607-2_5 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0
- 作者:
Hsu, Tzu-Ming Harry;Hang Qi;Brown, Matthew - 通讯作者:
Brown, Matthew
Phase stability and CMAS corrosion resistance of RETaO<sub>4</sub> (RE=Gd and Yb) at 1250 °C
- DOI:
10.1016/j.ceramint.2022.04.219 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Wenqi Yang;Fuxing Ye;Hang Qi - 通讯作者:
Hang Qi
Low frequency ultrasound combined with baicalein can reduced the invasive capacity of breast cancer cells by down regulating the expression of MMP-2, MMP-9, and u-PA
低频超声联合黄芩素通过下调MMP-2、MMP-9、u-PA表达降低乳腺癌细胞侵袭能力
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qian Xi;Hang Qi;Yuan Li;Y. Xi;Lei Zhang - 通讯作者:
Lei Zhang
Age Classification System with ICA Based Local Facial Features
基于 ICA 局部面部特征的年龄分类系统
- DOI:
10.1007/978-3-642-01510-6_86 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Hang Qi;Liqing Zhang - 通讯作者:
Liqing Zhang
Performance analysis based Markov chain in random access heterogeneous MIMO networks
随机接入异构MIMO网络中基于马尔可夫链的性能分析
- DOI:
10.1016/j.comnet.2020.107415 - 发表时间:
2020 - 期刊:
- 影响因子:5.6
- 作者:
Zhiqun Hu;Hang Qi;Xiangming Wen;Zhaoming Lu;Wenpeng Jing - 通讯作者:
Wenpeng Jing
Hang Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hang Qi', 18)}}的其他基金
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
- 批准号:
2323695 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
- 批准号:
2029157 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-AFOSR Joint Workshop on Mechanics-Based Design of Intelligent Material Systems by Multimaterial Additive Manufacturing; Melbourne, Australia; August 15, 2019
NSF-AFOSR 多材料增材制造智能材料系统基于力学设计联合研讨会;
- 批准号:
1922499 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Phase I IUCRC at Georgia Institute of Technology: Center for Science of Heterogeneous Additive Printing of 3D Materials SHAP3D
佐治亚理工学院 IUCCRC 第一阶段:3D 材料异质增材打印科学中心 SHAP3D
- 批准号:
1822141 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Planning I/UCRC Georgia Institute of Technology: Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D)
规划 I/UCRC 佐治亚理工学院:3D 材料异质增材打印科学中心 (SHAP3D)
- 批准号:
1650461 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Design of Active Composites Enabled by 3D Printing
合作研究:通过 3D 打印实现活性复合材料的设计
- 批准号:
1462894 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanics in Photopolymerization Based Additive Manufacturing
基于光聚合的增材制造力学
- 批准号:
1462895 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
DMREF/Collaborative Research: Laminated Elastomeric Composites with Anisotropic Shape Memory
DMREF/合作研究:具有各向异性形状记忆的层压弹性复合材料
- 批准号:
1334637 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Healing and Reprocessing of Epoxy with Dynamic Covalent Bonds and Composites
动态共价键环氧树脂和复合材料的修复和再加工
- 批准号:
1404627 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
面向功能分析的智能化几何造型方法
- 批准号:92270205
- 批准年份:2022
- 资助金额:300.00 万元
- 项目类别:重大研究计划
产品造型的类比推理式对抗生成设计方法研究
- 批准号:51905175
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于知识重用的车身自动几何建模方法研究
- 批准号:51905389
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于近壁面二次流修正方法的高负荷轴流压气机吸力面-端面造型反设计研究
- 批准号:51906027
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
面向CAD/CNC的曲线/曲面表示理论与方法研究
- 批准号:61872332
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Image-based Systems Biology of Vascular Co-option in Brain Tumors
脑肿瘤血管选择的基于图像的系统生物学
- 批准号:
10681077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DMS/NIGMS 1: Multiscale modeling of Notch signaling during long-range lateral inhibition
DMS/NIGMS 1:长程侧向抑制期间 Notch 信号传导的多尺度建模
- 批准号:
10797357 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: A Unified Multiscale Modeling Approach for Processes in the Atmospheric Boundary Layer
职业:大气边界层过程的统一多尺度建模方法
- 批准号:
2236504 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10467144 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10610468 - 财政年份:2022
- 资助金额:
-- - 项目类别: