Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
基本信息
- 批准号:10467144
- 负责人:
- 金额:$ 24.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAfferent NeuronsAreaBiologicalBrainCalciumCellsCollaborationsComplementComplexComputer ModelsComputer Vision SystemsCouplingCuesElectrophysiology (science)EngineeringEnvironmentFilamentFinite Element AnalysisFour-dimensionalFreund&aposs AdjuvantFutureGoalsHairHumanHypersensitivityImageInflammationInflammatoryInjectionsInjuryIntervention StudiesKnowledgeLateralLeadLocationMammalsManipulative TherapiesMassageMeasurementMeasuresMechanical StressMechanicsMethodsModelingMolecularMonitorMotionMovementMusNervous system structureNeuronsNeurosciencesNociceptorsOutputPainPatternPeripheralPersistent painPhysiologicalPopulationPropertyRadialResearchResearch PersonnelSeedsSensoryShapesSiteSkinSolidSpinal GangliaStimulusStressStretchingSurfaceSystemTactileTechniquesTechnologyTimeTissuesTouch sensationTransgenic MiceTranslatingallodyniabasedigital imagingexperiencegenetic manipulationimaging approachimaging modalityimaging platformin vivoin vivo calcium imagingin vivo imaginginflammatory paininnovationinterestmechanical stimulusmillisecondmouse modelnon-invasive imagingnovelnovel strategiespain reliefpressurereceptorrecruitrelating to nervous systemresponsesocialspatiotemporaltemporal measurementtissue injurytoolvibrationviscoelasticity
项目摘要
Populations of touch-sensitive afferents in the skin transduce mechanical stimuli into neural responses that
inform the brain about our natural environment. There is a need to mechanistically understand how superficial
and deep tissues, as well as mechanosensitive and nociceptive neurons, are engaged during touch. We currently
have little quantitative understanding of how innocuous stimuli elicit pain after tissue injury, how touch-based
manipulations relieve pain, or their exact impact, in terms of change in tissue stiffness or extensibility. The
overarching goal of this exploratory project is to develop a new, multiscale in vivo imaging platform for
monitoring the spatiotemporal dynamics of skin deformation and mechanosensory neuron activity. If successful,
the project will break technical barriers and enable mechanistic studies of persistent pain and its relief by manual
therapies in mouse models amenable to genetic manipulations.
Recent studies that combine transgenic mouse models with calcium imaging or electrophysiology have
identified genetically distinct populations of sensory neurons that respond preferentially to innocuous (e.g., brush,
vibration) or noxious mechanical stimuli (e.g., hair pull). Currently, however, single point measurements of
stimulus force or displacement are typical. To understand sensory encoding, we must instead ask – how does
the skin move during touch, and how does these skin deformations lead to activation of sensory neurons? Such
mechanical quantities ultimately recruit a population of sensory afferents to encode different qualities of touch.
To address this technological gap, these studies will develop 3D computer vision and digital image
correlation to directly quantify the distribution of stresses and strains over the entire surface of the skin,
simultaneously with stimulus movement, and while recording from populations of sensory neurons in vivo. Aim
1 focuses on a non-invasive, imaging approach in mice to evaluate localized skin surface deformation, strain
fields, and lateral stretch and motion, at high spatial (5 µm) and temporal resolution (1,000 frames/s), and
computational modeling to estimate mechanical stress in four dimensions (x/y/z/time). Aim 2 will demonstrate
the utility of these newly validated methods in contexts relevant for mechanistic studies of 1) mechanical pain
and 2) manual therapies. To do so, the methods for estimating skin mechanics will be used during in vivo calcium
imaging of DRG neurons and well-validated mouse models in two biological contexts, a well-established model
of inflammatory pain in glabrous paw skin, as well as hair-bearing skin areas. The latter is an essential step in
creating relevant mouse models for mechanistic studies of touch-based manual therapies such as massage.
This project is innovative because it will reveal how dynamic changes in the stress and strain in skin drive
the recruitment of distinct neural complements. Understanding their coupling is relevant to addressing key
questions in the context of heightened mechanical pain, such as in inflammation, as well as creating a proof-of-
concept, physiologically compatible approach for use in studying interventions used in manual therapy.
1
皮肤中的触觉传入神经群将机械刺激转化为神经反应,
需要让大脑了解我们的自然环境有多么肤浅。
目前,深层组织以及机械敏感和伤害感受神经元在触摸过程中参与。
对无害刺激如何在组织损伤后引起疼痛、基于触摸的疼痛如何进行定量了解很少
手法可以减轻疼痛,或者通过改变组织硬度或延展性来减轻疼痛的确切影响。
该探索性项目的总体目标是开发一种新的多尺度体内成像平台
监测皮肤变形和机械感觉神经元活动的时空动态如果成功,
该项目将打破技术障碍,实现持续性疼痛的机制研究及其手动缓解
适合基因操作的小鼠模型的疗法。
最近的研究将转基因小鼠模型与钙成像或电生理学相结合
确定了遗传上不同的感觉神经元群体,它们优先对无害的物质(例如刷子、
然而,目前,单点测量。
刺激力或位移是典型的。要理解感觉编码,我们必须问——如何做到这一点。
触摸时皮肤会移动,这些皮肤变形如何导致感觉神经元的激活?
机械量最终会招募一组感觉传入来编码不同的触觉质量。
为了解决这一技术差距,这些研究将开发 3D 计算机视觉和数字图像
相关性可直接量化整个皮肤表面的应力和应变的分布,
与刺激运动同时进行,并同时记录体内感觉神经元群体的目标。
1 重点关注小鼠的非侵入性成像方法,以评估局部皮肤表面变形、应变
场、横向拉伸和运动,在高空间 (5 µm) 和时间分辨率 (1,000 帧/秒) 下,以及
目标 2 将演示估计四个维度(x/y/z/时间)机械应力的计算模型。
这些新验证的方法在与 1) 机械性疼痛的机制研究相关的背景下的实用性
2) 手动治疗时,将在体内钙期间使用估计皮肤力学的方法。
DRG 神经元成像和两种生物背景下经过充分验证的小鼠模型,这是一个完善的模型
缓解无毛爪子皮肤以及有毛皮肤区域的炎症疼痛,后者是治疗的重要步骤。
创建相关的小鼠模型,用于按摩等基于触摸的手动疗法的机制研究。
该项目具有创新性,因为它将揭示皮肤应力和应变的动态变化如何驱动
不同神经互补的招募与解决关键问题有关。
肉质机械疼痛(例如炎症)中的问题,以及创建证明-
概念,生理上兼容的方法,用于研究手法治疗中使用的干预措施。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory John Gerling其他文献
Gregory John Gerling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory John Gerling', 18)}}的其他基金
NeuronS_MATTR Network: Neuronal & Systems Mechanisms of Affective Touch & Therapeutic Tissue Manipulation Research Network
NeuronS_MATTR 网络:神经元
- 批准号:
10612050 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10610468 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
NeuronS_MATTR Network: Neuronal & Systems Mechanisms of Affective Touch & Therapeutic Tissue Manipulation Research Network
NeuronS_MATTR 网络:神经元
- 批准号:
10451081 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Peripheral Mechanisms Governing Tactile Encoding During Normal Target Remodeling
正常目标重塑期间控制触觉编码的外围机制
- 批准号:
8741998 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
CRCNS: Modeling Impact of Receptor Arrangement on Spike Initiation in Touch
CRCNS:模拟受体排列对接触中尖峰起始的影响
- 批准号:
8142056 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
Peripheral Mechanisms Governing Tactile Encoding During Normal Target Remodeling
正常目标重塑期间控制触觉编码的外围机制
- 批准号:
9115728 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
CRCNS: Modeling Impact of Receptor Arrangement on Spike Initiation in Touch
CRCNS:模拟受体排列对接触中尖峰起始的影响
- 批准号:
8513087 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
Peripheral Mechanisms Governing Tactile Encoding During Normal Target Remodeling
正常目标重塑期间控制触觉编码的外围机制
- 批准号:
8630921 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
CRCNS: Modeling Impact of Receptor Arrangement on Spike Initiation in Touch
CRCNS:模拟受体排列对接触中尖峰起始的影响
- 批准号:
8318811 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
CRCNS: Modeling Impact of Receptor Arrangement on Spike Initiation in Touch
CRCNS:模拟受体排列对接触中尖峰起始的影响
- 批准号:
8055160 - 财政年份:2010
- 资助金额:
$ 24.48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Regulation of Ductular Reaction by Substance P during Alcohol-induced Liver Injury
P物质对酒精性肝损伤过程中小管反应的调节
- 批准号:
10592570 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Loss of Jedi-1 impairs microglia phagocytosis, resulting in reduced postnatal neurogenesis in the ventricular-subventricular zone.
Jedi-1 的缺失会损害小胶质细胞的吞噬作用,导致脑室-脑室下区的出生后神经发生减少。
- 批准号:
10704464 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别: