Collaborative: MSPA-MCS: Computational and Mathematical Foundations for the Synthesis of Multiresolution Representations with Variational Integrators and Discrete Geometry

协作:MSPA-MCS:使用变分积分器和离散几何合成多分辨率表示的计算和数学基础

基本信息

  • 批准号:
    0528402
  • 负责人:
  • 金额:
    $ 29.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-10-01 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

AbstractEffects ranging from very small to very large scales govern physical phenomena such as the evolution of a storm system or the structural deformation of an automobile during an accident. Accurately predicting these by resolving the finest scales in a computer simulation is prohibitively expensive. The investigators are studying how fine scale information impacts coarse scale behavior and vice versa. In effect, "summarizing" these relationships allow us to model coarse scale effects accurately and efficiently without the need to explicitly resolve the finest scales in a computation. A key to this study lies in the careful transfer of structures present in the mathematical models of these phenomena (which in essence have infinite resolution) to the computational realm with its finite resolution and finite computational resources. The methods being developed will allow rapid assessment of overall effects with the ability "to drill down" computationally where additional detail is required.Physical systems are typically described by a set of continuous equations using tools from geometric mechanics and differential geometry to analyze and capture their properties. For purposes of computation one must derive discrete (in space and time) representations of the underlying equations. Theories which are discrete from the start (rather than discretized after the fact), with key geometric properties built in, can more readily yield robust numerical simulations which are true to the underlying continuous systems: they exactly preserve invariants of the continuous systems in the discrete computational realm. So far these methods have not accounted for effects across scales. Yet both physics and numerical computation require such multi-resolution strategies. This research project is developing a multi-resolution theory for discrete variational methods and discrete differential geometry with applications to thin-shell and fluid modeling. The principal scientific innovation lies in techniques to conserve symmetries across computational scales.
摘要从非常小到非常大范围的影响控制着物理现象,例如风暴系统的演变或事故期间汽车的结构变形。通过在计算机模拟中解析最精细的尺度来准确预测这些是非常昂贵的。研究人员正在研究精细尺度信息如何影响粗尺度行为,反之亦然。实际上,“总结”这些关系使我们能够准确有效地对粗尺度效应进行建模,而无需在计算中显式解析最精细的尺度。这项研究的关键在于将这些现象的数学模型(本质上具有无限分辨率)中存在的结构小心地转移到具有有限分辨率和有限计算资源的计算领域。正在开发的方法将允许快速评估整体效果,并能够在需要额外细节的情况下通过计算“钻取”。物理系统通常由一组连续方程描述,使用几何力学和微分几何工具来分析和捕获它们的特性。为了计算的目的,必须导出基础方程的离散(空间和时间)表示。从一开始就是离散的理论(而不是事后离散),具有内置的关键几何属性,可以更容易地产生稳健的数值模拟,这些模拟对于底层的连续系统是真实的:它们准确地保留了离散系统中连续系统的不变量。计算领域。到目前为止,这些方法尚未考虑跨尺度的影响。然而物理学和数值计算都需要这种多分辨率策略。该研究项目正在开发离散变分方法和离散微分几何的多分辨率理论,并将其应用于薄壳和流体建模。主要的科学创新在于在计算尺度上保持对称性的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Grinspun其他文献

Simulating Shear Localization Using a Hybrid Discrete-Continuum Approach
使用混合离散连续方法模拟剪切定位
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Yichen Chen;Maytee Chantharayukhonthorn;Yonghao Yue;Ken Kamrin;Eitan Grinspun
  • 通讯作者:
    Eitan Grinspun
Simulating Funnel Discharge of Granular Materials Using a Hybrid MPM-DEM Approach
使用混合 MPM-DEM 方法模拟颗粒材料的漏斗排放
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Yichen Chen;Breannan Smith;Yonghao Yue;Eitan Grinspun;Maytee Chantharayukhonthorn;Ken Kamrin
  • 通讯作者:
    Ken Kamrin
Simulating Granular Shear Localization Using a Hybrid Discrete-Continuum Approach
使用混合离散连续方法模拟颗粒剪切定位
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Yichen Chen;Maytee Chantharayukhonthorn;Yonghao Yue;Ken Kamrin;Eitan Grinspun
  • 通讯作者:
    Eitan Grinspun
ハイブリッドな粉粒体シミュレーション手法の開発
混合粉末模拟方法的发展
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    楽詠コウ;Breannan Smith;Peter Yichen Chen;Maytee Chantharayukhonthorn;Kenneth Kamrin;Eitan Grinspun
  • 通讯作者:
    Eitan Grinspun
ハイブリッドな粉粒体シミュレーション手法
混合粉末模拟方法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    楽詠コウ;Breannan Smith;Peter Yichen Chen;Maytee Chantharayukhonthorn;Kenneth Kamrin;Eitan Grinspun
  • 通讯作者:
    Eitan Grinspun

Eitan Grinspun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Grinspun', 18)}}的其他基金

AF: Small: Collaborative Research: Computational Representations for Design and Fabrication of Developable Surfaces
AF:小型:协作研究:可展曲面设计和制造的计算表示
  • 批准号:
    1717268
  • 财政年份:
    2017
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
CHS: Small: Physically-Based Simulation of Strand-Liquid Interaction
CHS:小型:线-液体相互作用的基于物理的模拟
  • 批准号:
    1717178
  • 财政年份:
    2017
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
CGV: Small: Mesh-based Simulation of Thin Liquid Structures
CGV:小型:基于网格的薄液体结构模拟
  • 批准号:
    1319483
  • 财政年份:
    2014
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Computational Design and 3D Printing of Textiles
CHS:媒介:协作研究:纺织品的计算设计和 3D 打印
  • 批准号:
    1409286
  • 财政年份:
    2014
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
CGV: Small: Discrete Variational Contact, Impact, and Dissipative Dynamics
CGV:小:离散变分接触、冲击和耗散动力学
  • 批准号:
    1117257
  • 财政年份:
    2011
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Continuing Grant
IDR/Collaborative Research: Experimental and Computational Foundations for Nonlinear Pattern Formation in the Deposition of Elastic Rods
IDR/合作研究:弹性棒沉积中非线性图案形成的实验和计算基础
  • 批准号:
    1129917
  • 财政年份:
    2011
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
HCC: Small: Collaborative Research: Asynchrony and Persistence for Complex Contact Simulations
HCC:小型:协作研究:复杂接触模拟的异步性和持久性
  • 批准号:
    0916129
  • 财政年份:
    2009
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Continuing Grant
CAREER: Multiresolution Foundations for Physics-Based Computer Animation and Interactive Engineering Design
职业:基于物理的计算机动画和交互式工程设计的多分辨率基础
  • 批准号:
    0643268
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR--AES: Interactive Parallel Platforms for Multi-Experiment Computational Studies
合作研究:CSR--AES:多实验计算研究的交互式并行平台
  • 批准号:
    0614770
  • 财政年份:
    2006
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Continuing Grant

相似海外基金

MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732196
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732175
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732169
  • 财政年份:
    2007
  • 资助金额:
    $ 29.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了