Coupled Silicate Reaction Kinetics in an Aquifer
含水层中的耦合硅酸盐反应动力学
基本信息
- 批准号:0509755
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0509755ZhuThis proposal seeks renewal of a NSF-sponsored integrated research and education program infield, microscopic, and modeling studies of silicate reaction kinetics in a groundwater aquifer theNavajo sandstone aquifer at Black Mesa, Arizona. One of the fundamental problems in modernhydrogeology and geochemistry is the orders of magnitude discrepancy between silicate dissolutionrates derived from watersheds and soil profiles versus those derived from laboratory measurements.This large discrepancy indicates our lack of basic understanding of the fundamental physical andchemical processes controlling silicate dissolution kinetics in nature.The proposed study will test two hypotheses to explain this discrepancy: (1) A large part of thediscrepancy between in situ and laboratory rates results from different saturation states under whichfeldspars dissolve in natural systems and in most laboratory experiments. While most laboratoryexperiments attempt to measure the rate of a single congruent dissolution reaction far from equilibrium,field studies measure in situ rates amid a complex web of reaction networks and at a condition veryclose to equilibrium with respect to feldspars. Among these reactions is the precipitation of clay, whichremoves solutes from groundwater and hence promotes continued feldspar dissolution. However,contrary to the prevailing assumption that clays are at equilibrium with groundwater, we believe thatclay precipitation is much slower than feldspar dissolution, and hence groundwater chemistry isconstrained to be close to equilibrium with feldspars. Over time, a steady state of groundwaterchemistry is reached with near constant rates of feldspar dissolution and clay precipitation; and (2) Aleached layer forms on weathered feldspar surfaces, which is an important part of how silicatedissolution occurs in nature and must be considered in rate laws that properly describe reactionkinetics.The proposed study will test the first hypothesis by analyzing dissolved Al3+ concentrations inthe aquifer, evaluating saturation indices and their variations along a flow path, and numericalgeochemical modeling to elucidate the complex network of reactions associated with feldspardissolution in aquifers. We aim to establish a theoretical framework for interpreting laboratoryexperiments and field data. To test the second hypothesis, we will characterize microstructures anddetailed chemistry at the feldspar-clay interfaces using an atomic scale Field Emission GunTransmission Electron Microscope. The overall objectives are to advance our understanding of the twokey possibilities for discrepancies between laboratory and field rates: the diminishing thermodynamicdrive and the characteristics of weathered feldspar surfaces.Broader ImpactsThe PIs will integrate the research activities into undergraduate and graduate-level geologycourses. A summer mentorship program will sponsor undergraduate students, particularly fromunderrepresented groups, to conduct research in the PI's laboratories. Partnerships with the NationalEnergy Technology Laboratory and Los Alamos National Laboratory will be developed to facilitatedissemination and applications of the research results to the carbon sequestration and environmentalrestoration programs.Groundwater is a key source of drinking water and is essential to life on Earth. Groundwateralso represents 98% of fresh water readily available to humans. Therefore, reaction rates in aquifers arecritical to water resource and water quality management, waste disposal, and global warmingmitigation strategies. The findings from this project will therefore contribute to our understanding ofthe environment, and help to build a scientific basis for environmental policies and strategies.
0509755Zhu 该提案寻求更新由 NSF 赞助的综合研究和教育计划,该计划涉及亚利桑那州黑梅萨地下水含水层纳瓦霍砂岩含水层中硅酸盐反应动力学的现场、微观和建模研究。现代水文地质学和地球化学的基本问题之一是流域和土壤剖面得出的硅酸盐溶解速率与实验室测量得出的硅酸盐溶解速率之间的数量级差异。这种巨大差异表明我们对控制硅酸盐溶解动力学的基本物理和化学过程缺乏基本了解。拟议的研究将测试两个假设来解释这种差异:(1)原位速率和实验室速率之间的很大一部分差异是由不同饱和状态造成的长石溶解在自然系统和大多数实验室实验中。虽然大多数实验室实验试图测量远离平衡的单一全等溶解反应的速率,但现场研究在复杂的反应网络网络中以及在非常接近长石平衡的条件下测量原位速率。这些反应包括粘土的沉淀,它从地下水中去除溶质,从而促进长石的持续溶解。然而,与粘土与地下水处于平衡的普遍假设相反,我们认为粘土沉淀比长石溶解慢得多,因此地下水化学被限制为接近与长石的平衡。随着时间的推移,地下水化学达到稳定状态,长石溶解和粘土沉淀速率接近恒定; (2) 风化长石表面上形成浸出层,这是自然界中硅酸盐溶解如何发生的重要组成部分,必须在正确描述反应动力学的速率定律中予以考虑。拟议的研究将通过分析含水层中溶解的 Al3+ 浓度来检验第一个假设,评估饱和指数及其沿流动路径的变化,以及数值地球化学模型,以阐明与含水层中长石溶解相关的复杂反应网络。我们的目标是建立一个解释实验室实验和现场数据的理论框架。为了检验第二个假设,我们将使用原子级场发射枪透射电子显微镜来表征长石-粘土界面的微观结构和详细化学成分。总体目标是加深我们对实验室和现场速率差异的两个关键可能性的理解:热力学驱动力的减弱和风化长石表面的特征。更广泛的影响PI将把研究活动整合到本科和研究生水平的地质学课程中。夏季导师计划将资助本科生,特别是来自代表性不足群体的本科生,在 PI 的实验室进行研究。将与国家能源技术实验室和洛斯阿拉莫斯国家实验室建立合作伙伴关系,以促进研究成果在碳封存和环境恢复项目中的传播和应用。地下水是饮用水的主要来源,对地球上的生命至关重要。地下水还占人类可用淡水的 98%。因此,含水层的反应速率对于水资源和水质管理、废物处理和全球变暖缓解策略至关重要。因此,该项目的研究结果将有助于我们对环境的了解,并有助于为环境政策和战略奠定科学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Zhu其他文献
Attention Guided Deep Learning for CSI Compression and Feedback
用于 CSI 压缩和反馈的注意力引导深度学习
- DOI:
10.1109/icct59356.2023.10419429 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:0
- 作者:
Wencai Shan;Chongwen Huang;Chen Zhu;Qianqian Yang;Zhaohui Yang - 通讯作者:
Zhaohui Yang
Transferable Clean-Label Poisoning Attacks on Deep Neural Nets
对深度神经网络的可转移清洁标签中毒攻击
- DOI:
- 发表时间:
2019-05-15 - 期刊:
- 影响因子:0.1
- 作者:
Chen Zhu;W. R. Huang;Ali Shafahi;Hengduo Li;Gavin Taylor;Christoph Studer;T. Goldstein;Ronny Huang - 通讯作者:
Ronny Huang
Does ESG investment reduce carbon emissions in China?
ESG投资是否减少了中国的碳排放?
- DOI:
10.3389/fenvs.2022.977049 - 发表时间:
2022-10-12 - 期刊:
- 影响因子:0
- 作者:
Yingnan Cong;Chen Zhu;Yufei Hou;Shuairu Tian;X. Cai - 通讯作者:
X. Cai
Optimizing the Demodulation Method for DAS System Based on Point-Backscattering-Enhanced Fiber
基于点后向散射增强光纤的DAS系统解调方法优化
- DOI:
10.1109/tim.2024.3385810 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:5.6
- 作者:
Caiyun Li;Hongkun Zheng;Lingmei Ma;Chen Zhu;Yiyang Zhuang;Wei Peng;Jianguo Wang;Weiwang Hu;Yunjiang Rao - 通讯作者:
Yunjiang Rao
Synthesis and pyrolysis of polyacrylate-supported flavor precursors
聚丙烯酸酯负载风味前体的合成和热解
- DOI:
10.1016/j.tca.2024.179759 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:3.5
- 作者:
Chen Zhu;Wei;Chun;Liangyuan Jia;Zeng;Jin Zhang;Peng Zou;Yuan - 通讯作者:
Yuan
Chen Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen Zhu', 18)}}的其他基金
Closing Critical Knowledge Gaps in Rates of CO2 Mineralization in Soils, Rocks, and Aquifers as a Scalable Climate Change Mitigation Solution
作为可扩展的气候变化减缓解决方案,缩小土壤、岩石和含水层中二氧化碳矿化率的关键知识差距
- 批准号:
2242907 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Probing zircon reactivity in aqueous solutions at solubility equilibrium using isotope tracers
合作研究:使用同位素示踪剂探测处于溶解度平衡的水溶液中锆石的反应性
- 批准号:
2221907 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Testing Hypotheses of Near-Equilibrium Kinetics For Silicate Minerals with an Innovative Silicon Isotope Tracer Method
用创新的硅同位素示踪方法测试硅酸盐矿物的近平衡动力学假设
- 批准号:
1926734 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
A NEW APPROACH TO EXPERIMENTAL DETERMINATION OF COUPLED SILICATE DISSOLUTION - PRECIPITATION REACTION RATES AT AMBIENT CONDITIONS WITH SI ISOTOPE SPIKES
实验测定耦合硅酸盐溶解的新方法 - 环境条件下使用 SI 同位素尖峰的沉淀反应速率
- 批准号:
1225733 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Microbial Arsenate Reduction Control on Arsenic in Groundwater
合作研究:微生物砷酸盐还原控制地下水中的砷
- 批准号:
0809903 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Silicate Reactions Kinetics in a Major Groundwater Aquifer
合作研究:主要地下水含水层中的硅酸盐反应动力学
- 批准号:
0423971 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Silicate Reactions Kinetics in a Major Groundwater Aquifer
合作研究:主要地下水含水层中的硅酸盐反应动力学
- 批准号:
0003816 - 财政年份:2000
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
稀土硅酸盐陶瓷在高温水氧—CMAS耦合环境下腐蚀过程的原位监测与反应机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硅酸盐辅助磷化法构筑分子筛@磷化镍催化剂及其烷烃异构化反应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硅酸盐水泥熟料矿相高温协同反应及其调控机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Cu/Zr-Silicate-1催化二氧化碳加氢制备甲醇及其反应机制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
硅酸盐矿物/铁基复合涂层的自修复反应活性调控及其摩擦学行为与机理
- 批准号:52075544
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Nanoscale Interfacial Phenomena and Reaction Kinetics of Calcium Silicate Minerals in Cements
职业:水泥中硅酸钙矿物的纳米级界面现象和反应动力学
- 批准号:
2237137 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Silica Nephropathy and Chronic Kidney Disease of Unknown Etiology
二氧化硅肾病和病因不明的慢性肾脏病
- 批准号:
10029114 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Silica Nephropathy and Chronic Kidney Disease of Unknown Etiology
二氧化硅肾病和病因不明的慢性肾脏病
- 批准号:
10212382 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Silica Nephropathy and Chronic Kidney Disease of Unknown Etiology
二氧化硅肾病和病因不明的慢性肾脏病
- 批准号:
10461915 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Experimental study on photochemistry of water and CO molecules on silicate dust
硅酸盐粉尘上水和CO分子的光化学实验研究
- 批准号:
19K23449 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up