Metallic Core-Shell Nanostructures: Synthesis, Stability, Coupled Properties and Novel Devices

金属核壳纳米结构:合成、稳定性、耦合性能和新型器件

基本信息

  • 批准号:
    0501421
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The fundamental goal of the research is to investigate the synthesis, stability and coupled functional properties (magnetic/optical and magnetic/spin-dependent transport, magnetic/biofunctionality) of nanometer-size, metallic cores whose surfaces have been modified with metallic shells or chemically functionalized for specific applications. It explores a new direction by synthesizing the next hierarchy of nanoscale building blocks, metallic core-shell structures. Recognizing the importance of surface energies in systems of nanoscale dimensions, experiments address their thermodynamic stability by treating the systems as "nanocrucibles". It addresses the evolution, elucidation and optimization of the coupled properties of surface-engineered nanocrystals, emphasizing size-dependent scaling laws that specifically affect their dynamic magnetic behavior and optical properties. It brings to bear a number of advanced characterization methods that are critical to the evaluation of microstructure at the nanometer length scale and correlating it with the observed properties. It also builds on an earlier observation of the assembly of nanodisks and creates a novel experiment that may lead to the demonstration of the smallest magnetoresistive sensor. There is very broad international scientific participation in this project with collaborative interactions planned to benefit the training and education of graduate students. The research has broad technological impact on a variety of sensing applications that include magnetic recording. Moreover, synthesis and surface functionalization of magnetic core-shell structures could lead to a number of novel therapeutic and diagnostic applications in biomedicine. This includes bio-labeling for contrast enhancement in magnetic resonance imaging, hyperthermia for cancer treatment, magnetic sensors based on dynamic magnetic relaxation, and microfluidic sensors using core-shell structures with coupled magnetic and optical functionalities. The research has broad impact on teaching, education and outreach activities at UW with a direct bearing on both graduate (magnetic materials, bonding and crystallography) and undergraduate (nanoscience and nanotechnology) courses. The latter is taught in a cooperative learning mode with supervised involvement of the graduate students in the education of undergraduates. The PI and his research group, especially the graduate and undergraduate students, are actively involved in outreach activities through the annual UW, College of Engineering open house that is attended by more than 4000 students from local schools. An extensive, interactive and very popular exhibit on magnetism and spinelectronics, developed for the first time last year, will be refined and enlarged in coming years. The PI is committed to enhancing the diversity of graduate student participation in his research program. He is a founding member of the UW Graduate School faculty committee on Recruitment from Minority Serving Institutions. The PI continues to work actively with the Center for Instructional Research and Development (CIDR), the Center for Engineering Learning and Teaching (CELT), the Minority Science and Engineering Program (MSEP), and Women in Science and Engineering (WiSE) to increase the participation of women and people of diverse backgrounds in his teaching and research activities on the UW c
该研究的基本目标是研究纳米尺寸金属核的合成、稳定性和耦合功能特性(磁/光和磁/自旋依赖输运、磁/生物功能),其表面已用金属壳或化学方法修饰。针对特定应用进行功能化。它通过合成下一代纳米级结构单元——金属核壳结构,探索了一个新的方向。认识到表面能在纳米级尺寸系统中的重要性,实验通过将系统视为“纳米坩埚”来解决其热力学稳定性问题。它解决了表面工程纳米晶体耦合特性的演变、阐明和优化,强调了具体影响其动态磁行为和光学特性的尺寸依赖性缩放定律。它带来了许多先进的表征方法,这些方法对于评估纳米长度尺度的微观结构并将其与观察到的特性关联起来至关重要。它还建立在对纳米盘组装的早期观察的基础上,并创建了一项新颖的实验,该实验可能会导致最小磁阻传感器的演示。该项目有非常广泛的国​​际科学参与,并计划进行合作互动,以利于研究生的培训和教育。该研究对包括磁记录在内的各种传感应用具有广泛的技术影响。此外,磁性核壳结构的合成和表面功能化可以在生物医学中带来许多新颖的治疗和诊断应用。这包括用于磁共振成像对比度增强的生物标记、用于癌症治疗的热疗、基于动态磁弛豫的磁传感器以及使用具有耦合磁和光功能的核壳结构的微流体传感器。该研究对华盛顿大学的教学、教育和外展活动产生了广泛影响,对研究生(磁性材料、键合和晶体学)和本科生(纳米科学和纳米技术)课程有直接影响。后者以合作学习模式进行教学,研究生在本科生的教育中参与监督。 PI 和他的研究小组,特别是研究生和本科生,通过一年一度的威斯康星大学工程学院开放日活动积极参与外展活动,来自当地学校的 4000 多名学生参加了该活动。去年首次开发的关于磁学和自旋电子学的广泛、互动且非常受欢迎的展览将在未来几年得到完善和扩大。 PI 致力于提高研究生参与其研究项目的多样性。他是华盛顿大学研究生院少数族裔服务机构招聘教师委员会的创始成员。 PI 继续与教学研究与发展中心 (CIDR)、工程学习与教学中心 (CELT)、少数族裔科学与工程项目 (MSEP) 以及科学与工程领域的女性 (WiSE) 积极合作,以提高妇女和不同背景的人参与他在华盛顿大学 c 的教学和研究活动

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kannan Krishnan其他文献

Hematotoxic interactions: occurrence, mechanisms and predictability.
血液毒性相互作用:发生、机制和可预测性。
  • DOI:
    10.1016/0300-483x(96)83476-7
  • 发表时间:
    1995-12-28
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Kannan Krishnan;M. Pelekis
  • 通讯作者:
    M. Pelekis
Optical differential phase shift keying transceiver systems performance efficiency at high data rate optical systems in the presence of Pr doped amplifiers
光学差分相移键控收发器系统在存在 Pr 掺杂放大器的情况下在高数据速率光学系统中的性能效率
  • DOI:
    10.1515/joc-2023-0025
  • 发表时间:
    2023-03-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Rashed;Kannan Krishnan;R. Prabu;Benisha Maria Xavier;S. H. Ahammad;M. Hossain
  • 通讯作者:
    M. Hossain
Determination of p-tert-octylphenol in blood and tissues by gas chromatography coupled with mass spectrometry.
采用气相色谱-质谱法测定血液和组织中的对叔辛基苯酚。
  • DOI:
    10.1093/jat/32.4.303
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    G. Hamelin;G. Charest;Kannan Krishnan;Daniel G. Cyr;Michel Charbonneau;P. Devine;Sami Haddad;G. M. Cooke;G. M. Cooke;Timothy J. Schrader;R. Tardif
  • 通讯作者:
    R. Tardif
Physiologically Based Pharmacokinetic and Toxicokinetic Models
基于生理学的药代动力学和毒代动力学模型
  • DOI:
    10.1201/b14258-7
  • 发表时间:
    2007-09-25
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Kannan Krishnan;M. Andersen
  • 通讯作者:
    M. Andersen
Micro-Traveling Wave Magnetic Particle Imaging—Sub-Millimeter Resolution With Optimized Tracer LS-008
微行波磁粒子成像——采用优化示踪剂的亚毫米分辨率 LS-008
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    P. Vogel;M. A. Ruckert;S. Kemp;A. Khandhar;R. M. Ferguson;S. Herz;Anna Vilter;P. Klauer;T. Bley;Kannan Krishnan;V. Behr
  • 通讯作者:
    V. Behr

Kannan Krishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kannan Krishnan', 18)}}的其他基金

Exchange-coupled magnetic metamaterials: fabrication, structure-property correlations, and applications
交换耦合磁性超材料:制造、结构-性能相关性和应用
  • 批准号:
    1604186
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Magnetic Behavior of Nanoengineered Lithographic Particles and Arrays in the Single Domain Limit
纳米工程光刻颗粒和阵列在单畴极限下的磁性行为
  • 批准号:
    1063489
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Diluted Magnetic Dielectrics : New Spintronics Materials and Devices
稀磁电介质:新型自旋电子学材料和器件
  • 批准号:
    0501490
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Acquisition of a Scanning Probe Microscope System for Research and Education in Nanomagnetism and Spinelectronics
采购用于纳米磁性和自旋电子学研究和教育的扫描探针显微镜系统
  • 批准号:
    0315460
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Isolated and Collective Magnetic Phenomena in Metallic Nanocrystals and Their Superlattices
金属纳米晶体及其超晶格中的孤立和集体磁现象
  • 批准号:
    0203069
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SPIN ELECTRONICS: Varied Synthetic Approaches to the Development of Room-Temperature Ferromagnetic and Semiconducting Oxide Nanostructures for Silicon Based Spintronics
自旋电子学:开发用于硅基自旋电子学的室温铁磁和半导体氧化物纳米结构的各种合成方法
  • 批准号:
    0224138
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

多相聚烯烃核壳粒子刚韧特性定向优化及其改性沥青性能协同调控机制
  • 批准号:
    52308460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于配体保护金纳米核壳团簇的单分子光电子器件理论研究和设计
  • 批准号:
    12304300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铜渣凝胶核-壳结构固砷机理及封装机制研究
  • 批准号:
    52370138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
核壳型咯菌腈控释体系防治小麦全生育期茎基腐病的释放行为及调控机制
  • 批准号:
    32372599
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SiO2@LDH核壳晶种协同提升海工大掺量固废混凝土早期强度与抗氯离子渗透性的作用机制
  • 批准号:
    52371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of core/shell nano-composite magnetic particles by low oxygen powder metallurgy
低氧粉末冶金核/壳纳米复合磁性粒子的研制
  • 批准号:
    22KF0432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
  • 批准号:
    2327667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Core: Medium: Scaling Unix/Linux Shell Programs
协作研究:CSR:核心:中:扩展 Unix/Linux Shell 程序
  • 批准号:
    2312346
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
  • 批准号:
    2327667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Activation of metal-metal bonds in stable metal cluster compounds with closed-shell configuration.
具有闭壳结构的稳定金属簇化合物中金属-金属键的活化。
  • 批准号:
    22KJ2607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了