Colloidal Micromechanics and Near-Contact Interactions

胶体微观力学和近接触相互作用

基本信息

  • 批准号:
    0500321
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT - 0500321University of DelawareWe propose to investigate the micromechanical response and near-contact interactions that underlie the properties of colloidal gels. This will be accomplished using novel experiments we have developed based on optical trapping, which enables us to directly assemble model aggregates from individual colloids and controllably deform them while measuring microscopic stresses. The proposed work will build on the preliminary results obtained under an exploratory grant (NSF CTS-0209936), in which we demonstrated and measured tangential interactions between colloids that arise in near-contact regimes. Our work quantified, for the first time, the single-bond bending rigidity between particles, and discovered regimes of linear and non-linear bending mechanics of aggregates. These properties have dependences on physico-chemical conditions, such as the solution ionic strength and adsorption of surfactants. The mechanics to be studied, unrecognized until now, have considerable consequences for the processing and properties of particulate gels, because of their influence on the yield stress, aging properties and moduli of these materials. The activity proposed here will build upon the successes of two years of exploratory funding, and will significantly extend this activity to develop new experiments based on insights we have gained. In addition, we will work with research groups from other universities who will bring expertise in modeling heterogeneous colloidal interactions and particle characterization via AFM. Expecting that this work will have a significant technological impacts, we have positioned ourselves for productive industrial collaborations and contacts within the DuPont Automotive Coatings Division.Intellectual Merit. Because particulate gels occur in a wide variety of manufacturing processes, including coatings, pharmaceutical formulations, ceramic parts manufacturing, mineral recovery and lubricant degradation, there is considerable interest in the ability to predict and control their properties. Gelation also adversely affects efforts to crystallize proteins, limiting the characterization of protein structure and function. Although there have been notable advances in recent years, the fundamental mechanisms of the mechanical and rheological properties of particulate gels based on interparticle interactions, microstructure and micromechanics have yet to be fully understood. By spanning the nano- and micro-scale physics to macroscopic behavior, we will establish the fundamentals needed to synthesize new materials, and improve the prediction and control of product and processing properties in existing materials. Furthermore, the understanding and control of colloidal interactions that are a natural aspect of this work, extends beyond gel rheology to novel and emerging applications, such as photonic crystals, chembiosensors and nanotechnology. The lack of experimental methods capable of examining near-contact interactions between nonideal colloidal surfaces has been cited as an area in critical need of development, which we are well-equipped to address.Broader Impacts. This work will provide education and research training for two graduate students in the technologically-critical field of colloid science. This training experience will be significantly enhanced through our interactions with groups at Yale Unviersity and DuPont Marshall Labortory. Funds will support one undergraduate research student to complete an Honors thesis. To date, this work has had a significant educational impact, resulting in one MChE (currently a matriculated Ph.D. student), three undergraduate honors theses (co-authors on two papers in preparation) and, currently, one senior thesis student, who is expected to co-author two upcoming papers. Results of this research will reach a broad community of scientists and engineers through publications in journals and presentations at national and international scientific meetings.
摘要 - 0500321特拉华大学我们建议研究胶体凝胶特性背后的微机械响应和近接触相互作用。这将通过我们基于光学捕获开发的新颖实验来完成,这使我们能够直接从单个胶体组装模型聚集体,并在测量微观应力的同时可控地使它们变形。拟议的工作将建立在探索性资助(NSF CTS-0209936)下获得的初步结果的基础上,其中我们演示并测量了近接触状态下出现的胶体之间的切向相互作用。我们的工作首次量化了颗粒之间的单键弯曲刚度,并发现了聚集体的线性和非线性弯曲力学机制。这些特性取决于物理化学条件,例如溶液离子强度和表面活性剂的吸附。迄今为止尚未认识到的待研究力学对颗粒凝胶的加工和性能具有相当大的影响,因为它们对这些材料的屈服应力、老化性能和模量有影响。 这里提出的活动将建立在两年探索性资助的成功基础上,并将显着扩展这项活动,以根据我们获得的见解开发新的实验。此外,我们将与其他大学的研究小组合作,他们将带来通过 AFM 模拟异质胶体相互作用和颗粒表征的专业知识。 预计这项工作将产生重大的技术影响,我们已在杜邦汽车涂料部门内进行富有成效的工业合作和联系。智力优势。由于颗粒凝胶存在于各种制造过程中,包括涂料、药物配方、陶瓷零件制造、矿物回收和润滑剂降解,因此人们对预测和控制其特性的能力非常感兴趣。凝胶化还会对蛋白质结晶产生不利影响,限制蛋白质结构和功能的表征。尽管近年来取得了显着的进展,但基于颗粒间相互作用、微观结构和微观力学的颗粒凝胶的机械和流变性能的基本机制尚未完全了解。 通过跨越纳米和微观物理到宏观行为,我们将建立合成新材料所需的基础知识,并改进对现有材料的产品和加工性能的预测和控制。此外,对胶体相互作用的理解和控制是这项工作的一个自然方面,它超越了凝胶流变学,扩展到新颖和新兴的应用,例如光子晶体、化学生物传感器和纳米技术。 缺乏能够检查非理想胶体表面之间近接触相互作用的实验方法被认为是一个急需发展的领域,我们有能力解决这个问题。更广泛的影响。这项工作将为胶体科学技术关键领域的两名研究生提供教育和研究培训。通过我们与耶鲁大学和杜邦马歇尔实验室的团队的互动,这种培训经验将得到显着增强。资金将支持一名本科生完成荣誉论文。迄今为止,这项工作已经产生了重大的教育影响,产生了一名 MChE(目前是一名已被录取的博士生)、三篇本科荣誉论文(两篇论文正在准备中的合著者)以及目前的一名高级论文学生,预计他将与人共同撰写两篇即将发表的论文。这项研究的结果将通过期刊上的出版物以及在国家和国际科学会议上的演讲,传播给广大科学家和工程师。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Furst其他文献

Eric Furst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Furst', 18)}}的其他基金

2018 Colloidal, Macromolecular and Polyelectrolyte Solutions: The Science and Application of Soft Materials in Hard(er) Environments
2018胶体、高分子和聚电解质解决方案:硬环境中软材料的科学与应用
  • 批准号:
    1812917
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
ISS: Kinetics of nanoparticle self-assembly in directing fields
ISS:定向场中纳米粒子自组装的动力学
  • 批准号:
    1637991
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
REU SITE: Interfacing Sustainable Energy and Materials
REU 站点:连接可持续能源和材料
  • 批准号:
    1460932
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Responsive, shape-changing endoskeletal droplets
响应性、形状变化的内骨骼液滴
  • 批准号:
    1336132
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Microrheology of colloidal glasses and gels
合作研究:胶体玻璃和凝胶的微观流变学
  • 批准号:
    1235955
  • 财政年份:
    2012
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Interactions and self-assembly of anisotropic colloidal particles in electric fields
电场中各向异性胶体颗粒的相互作用和自组装
  • 批准号:
    0930549
  • 财政年份:
    2009
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Active and Nonlinear Microrheology
合作研究:主动和非线性微流变学
  • 批准号:
    0730292
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Colloidal interactions and micromechanics in 2D and 3D gels
2D 和 3D 凝胶中的胶体相互作用和微观力学
  • 批准号:
    0553656
  • 财政年份:
    2006
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
NER: New Nanoscale Probes of Molecular Motors
NER:分子马达的新型纳米探针
  • 批准号:
    0304051
  • 财政年份:
    2003
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
CAREER: Bridging Nano, Micro and Macro-Scales in Complex Fluids
职业:连接复杂流体中的纳米、微观和宏观尺度
  • 批准号:
    0238689
  • 财政年份:
    2003
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Al2O3基定向凝固氧化物共晶陶瓷微观组织的高温生长粗化机制和力学性能研究
  • 批准号:
    52372066
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
温度依赖型水调面团的微观视觉结构和力学行为关系的研究
  • 批准号:
    32372243
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于热-化耦合作用下接缝愈合的高压实膨润土力学特性及微观机理
  • 批准号:
    42307211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
InGaN辐照缺陷的微观动力学行为及其对载流子性质影响研究
  • 批准号:
    12305302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
功能纳米线序构组装体的精准制备及微观力学增强机制研究
  • 批准号:
    22375083
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
  • 批准号:
    2340174
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Mud pumping under rail tracks: from Micromechanics to Predictions
铁轨下的泥浆泵送:从微观力学到预测
  • 批准号:
    DP240102765
  • 财政年份:
    2024
  • 资助金额:
    $ 4万
  • 项目类别:
    Discovery Projects
CAREER: Micromechanics and Metabolic Properties of Living Interfacial Materials
职业:活性界面材料的微观力学和代谢特性
  • 批准号:
    2422153
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Additive manufacturing of a nickel superalloy: The micromechanics of plasticity and fracture
镍高温合金的增材制造:塑性和断裂的微观力学
  • 批准号:
    573451-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Alliance Grants
The micromechanics of ductile to brittle fracture in polycrystals
多晶韧脆断裂的微观力学
  • 批准号:
    RGPIN-2022-02955
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了