4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
基本信息
- 批准号:0505638
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposer plans to investigate the topology of smooth 4-manifolds by attacking some unsolved problems in 4-manifolds by decomposing them into basic easy to understand pieces (PALF's), and studying the pieces by applying techniques of complex and symplectic manifold theory. He also plans to work on calibrated manifolds, and on real algebraic varieties. In particular he plans to study on certain classes of 7 and 8 dimensional manifolds (so called G2 and Spin(7) manifolds); by studying the certain families of 3 and 4 dimensional submanifolds in them (so called associative and Cayley submanifolds) Proposer hopes to get a global understanding of the gauge theories of low dimensional manifolds, and construct a counting theory for these submanifolds (similar to Gromov-Witten counting theory of holomorphic curves in symplectic manifolds). Also, Proposer wants to continue to work on the project of topological characterization of real algebraic sets.Three and four dimensional manifolds, and certain classes of seven and eight dimensional manifolds (so called G2 and Spin(7) manifolds) are current interest of physicist because they play central role in understanding of space-time and the String theory physics. Also, algebraic sets are a nice way to describe topological spaces in equations, but not all the topological spaces can be described this way. Proposal plans to characterize all the topological spaces that can be described as real algebraic sets.
提议者计划通过将它们分解为基本易于理解的作品(Palf's),并通过应用复杂和符号歧管理论的技术来研究这些片段,从而通过攻击4个manifolds中的一些未解决的问题来研究光滑的4个manifolds的拓扑拓扑。他还计划研究经过校准的歧管和实际代数品种。他特别计划研究某些7和8维歧管的类别(所谓的G2和Spin(7)歧管); by studying the certain families of 3 and 4 dimensional submanifolds in them (so called associative and Cayley submanifolds) Proposer hopes to get a global understanding of the gauge theories of low dimensional manifolds, and construct a counting theory for these submanifolds (similar to Gromov-Witten counting theory of holomorphic curves in symplectic manifolds).此外,提议者希望继续研究真实代数集的拓扑表征的项目。三个和四个维歧管,七个和八个维歧管的某些类别(所谓的G2和Spin(7)歧管)的某些类别是物理学家的当前兴趣,因为它们在理解时空和字符串理论物理学方面起着核心作用。同样,代数集是描述方程式拓扑空间的好方法,但并非所有拓扑空间都可以通过这种方式描述。建议计划表征所有可以描述为真实代数集的拓扑空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Selman Akbulut其他文献
Exotic rational surfaces without 1-handles
不带 1 控制柄的奇异有理曲面
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Selman Akbulut;Kouichi Yasui;Kouichi Yasui;安井弘一;Kouichi Yasui - 通讯作者:
Kouichi Yasui
Computer graphics and minimal surfaces
计算机图形学和最小曲面
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Selman Akbulut;安井弘一;Shoichi Fujimori - 通讯作者:
Shoichi Fujimori
Corks, Plugs and exotic structures
软木塞、塞子和奇异结构
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Selman Akbulut;Kouichi Yasui - 通讯作者:
Kouichi Yasui
Exotic rational elliptic surfaces without 1-handles
不带 1 控制柄的奇异有理椭圆曲面
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Selman Akbulut;Kouichi Yasui;Kouichi Yasui - 通讯作者:
Kouichi Yasui
Contact 5-manifolds admitting open books with exotic Stein pages
接触 5-流形承认开放的书籍与异国情调的斯坦因页面
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Selman Akbulut;安井弘一 - 通讯作者:
安井弘一
Selman Akbulut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Selman Akbulut', 18)}}的其他基金
Exotic 4- Manifolds, and geometric structures
奇异4-流形和几何结构
- 批准号:
1505364 - 财政年份:2015
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
- 批准号:
1502135 - 财政年份:2015
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
- 批准号:
1065879 - 财政年份:2011
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Conference - Gokova Geometry/Topology Conference. To be held summer 2010-2014 in Turkey
会议 - Gokova 几何/拓扑会议。
- 批准号:
1005366 - 财政年份:2010
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
- 批准号:
0905917 - 财政年份:2009
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
- 批准号:
0707123 - 财政年份:2007
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
- 批准号:
0403096 - 财政年份:2004
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
FRG: Topological Invariants of 3 and 4-Manifolds
FRG:3 和 4 流形的拓扑不变量
- 批准号:
0244622 - 财政年份:2003
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
相似国自然基金
相控阵馈源定标和波束校准关键技术研究
- 批准号:12303095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
日冕仪偏振分析的可溯源校准
- 批准号:42374220
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
深海海底管线管多向缩径校准强化机制与多载荷联合作用失效破坏机理
- 批准号:52375389
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于变分推断和物理约束的机器学习综合方法校准南极冰架流变参数
- 批准号:42376230
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
米波十米波射电日像仪校准和数据处理方法研究
- 批准号:12373102
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 10.8万 - 项目类别:
Studentship
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
- 批准号:
2335105 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Cooperative Agreement
CAREER: HCC: Designing Visualizations to Support Critical Thinking and Calibrated Trust in Data
职业:HCC:设计可视化以支持批判性思维和校准数据信任
- 批准号:
2237585 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Self-calibrated ionophore-based ion-selective electrodes for at-home measurements of blood electrolytes
用于家庭测量血液电解质的自校准离子载体离子选择电极
- 批准号:
10592523 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Clinically-calibrated Accelerated Fatigue Test for Predicting the Clinical Performance of Dental Restorative Materials
用于预测牙科修复材料临床性能的临床校准加速疲劳测试
- 批准号:
10738667 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别: